Visual Data Mining of Remote Sensing Data

Jürgen Symanzik*,
Utah State University, Logan, UT

*e-mail: symanzik@sunfs.math.usu.edu
WWW: http://www.math.usu.edu/~symanzik

with Louise Griffith, Rob Gillies, Di Cook, Jim Majure, Nicholas Lewin-Koh,
Noel Cressie, Sigbert Klinke
Contents

- Visual Data Mining
 - Definitions
 - Software
 - Techniques

- Examples

- Live Demos
Data Mining

Ed Wegman:

“Data Mining is Exploratory Data Analysis with Little or No Human Interaction using Computationally Feasible Techniques, i.e., the Attempt to find Interesting Structure unknown a priori”
Working Definition:

- Find structure (cluster, unusual observations) in large and not necessarily homogeneous data sets based on human perception using graphical methods and user interaction
- Goal or expected outcome of exploration usually unknown in advance
First uses of the term:

Software: XGobi/GGobi
Swayne, Cook and Buja

• Interactive environment for exploring multivariate data
 * Linked views allow “linked brushing”
 * Univariate, Bivariate and Multivariate views of the data
 * Grand tour
 * Wide variety of methods
 * Open source
 * Free

• Caveats
 * XGobi only on UNIX and Linux platforms
 * GGobi also available for PCs but not yet fully developed
Software: ArcView

• Desktop GIS with wide Range of Viewing and Data Manipulation Functions
 – Editing Features
 – Query Operations
 – Map Display
 – Interactive Interface
 – High Level Internal Scripting Language
Software: ExplorN/CrystalVision
Wegman, Luo, Carr

- Interactive environment for exploring multivariate data (similar to XGobi/GGobi)
 - Advanced Parallel Coordinates Displays
 - 3D Surfaces
 - Stereoscopic Displays

- Caveats
 - ExplorN only on SGI platforms
 - CrystalVision available for PCs but not yet fully developed
 - No interface to GIS software
Tools: Linked Brushing

XGobi

ArcView
Tools: Parallel Coordinate Plots

ExplorN
Tools: Scatterplot Matrix & Density Plot

ExplorN
Tools: Grand Tour

– Continuous random sequence of projections from n dimensions into 2 (or more) dimensions.
Examples

– Historical Examples
– Vermont/New Hampshire:
 » Quarry, Water, Clouds
– Atlanta
 » City, Forest
– California (Imperial Valley)
 » Fields
– North Africa
 » Desert
Stat Graphics & Remote Sensing

- Klein, Moreira (1994): Agricultural Region in Brazil
- Scott (1986): Agricultural Scene on 5 Days
- Salch, Scott (1997): 3 Groups of Farm Crops
- Carr (1991): Nevada Test Site
ArcView/XGobi/XploRe & Remote Sensing

- Symanzik, Majure, Cook (1996, 1997)
- Cook, Majure, Symanzik, Cressie (1996)
- Symanzik, Cook, Klinke, Lewin (1998)
- Symanzik, Griffiths, Gillies (2000)
The Vermont/New Hampshire Data

- Landsat Thematic Mapper (TM) data
- 6 Spectral Bands
- Outstanding Water Body is Connecticut River
Field/Quarry/Clouds ??
Water = Water ??
The Atlanta Data

- **NOAA-14 Satellite** (National Oceanic and Atmospheric Administration)
- **AVHRR Sensor** (Advanced Very High Resolution Radiometer):
 - Band 1: Red
 - Band 2: Near Infrared
 - Band 3: Mid Infrared
 - Band 4: Long Infrared
 - Band 5: (Very) Long Infrared
- **Data from “NASA’s Project Atlanta”**
- **18 Days from Jan 1997 to Dec 1997**
- **Resolution**: 1 km x 1 km per Pixel
- **Main Study Area**: 70 km x 46 km
Some Definitions

- Normalized Difference Vegetation Index:
 \[NDVI = \frac{\text{Band 2} - \text{Band 1}}{\text{Band 2} + \text{Band 1}} \]

- \(NDVI \sim 0.8 \) for Highly Vegetated Surfaces
- \(NDVI \sim 0.1 \) for Bare Soil
- Surface Radiant Temperature \(T_0 \): Band 4
- Surface Moisture Availability \(M_0 \)
NS001-TMS derived T_o-NDVI scatterplot (gray spectral scaling) at a 5 meter spatial resolution for a 7 x 3 km area of the Mahantango Watershed, Pennsylvania. 18 July 1990, 1145 LST. Isopleths representing moisture availability index, M_o are overlaid with the legend, $o = 0.0$ (‘warm’ edge), $\hat{o} = 0.2$, $\square = 0.4$, $\Delta = 0.6$, $\nabla = 0.8$, and $\times = 1.0$ (cold edge).
The Main Study Area
Two Months

August

December
The City

December

August
Clouds in August

August
2 Pixels of Interest

December

Linked

August
The Imperial Valley/CA Data

- Landsat-4 Thematic Mapper (TM) Data
- December 12, 1982
- 7 Spectral Bands
- 124 Fields with known Crop Information
Ground Truth
Alfalfa x 2
Live Demo

GGobi

CrystalVision
Result CrystalVision
Overall Conclusion

- Visual approach effective to see unexpected structure in data.
- Combination of different techniques most effective.
- Can be used for almost all types of RS data.
Future Work (1)

- Enhance new software (GGobi, CrystalVision) to operate in a linked environment with GIS software.
- Allow access to databases.
Future Work (2)

- Use 3D environment (CAVE, MiniCAVE) for visualization and visual data mining.
Contact

- Jürgen Symanzik
 - symanzik@sunfs.math.usu.edu
- Website
 - www.math.usu.edu/~symanzik