Juergen Symanzik
Edward J. Wegman J. Patrick Vandersluis
Qiang Luo Fernando Camelli
Antoinette Dzubay Xiadong Fu
Nkem-Amin Khumbah Rida E. A. Moustafa
Robert L. Wall Ying Zhu

3rd International Immersive Projection Technology Workshop

May 11, 1999
Outline of Talk

- The CAVE™ VR Environment
- Motivation for the MiniCAVE™
- The MiniCAVE™ Environment
 - Windows NT/Pentium II Implementation
 - Voice Interface
- Technical Challenges
Trademark Notes

- CAVE is a trademark of the Electronic Visualization Laboratory at the University of Illinois, Chicago
- MiniCAVE is a trademark of the Center for Computational Statistics at George Mason University
CAVE Concept

✔️ A Projection-based Immersive VR System
 - Silicon Graphics-based with 8 to 12 processors
 - RE^2 or RE Infinity graphics engines
 - CRT-based projection system
 - Stereographics Crystal Eyes shutter glasses
 - Head tracking
 - Usually 3 to 6 wall cube
CAVE Strengths

✓ Effective immersive environment
 – Lightweight non-intrusive glasses
 – Can see own hands and other participants

✓ Effective for group VR
 – Good tool for group collaboration
CAVE Weaknesses

✅ CRT Projectors
 - Projectors not very bright
 - Shock, vibration & heat, hard to keep focus
 - Geometric distortion at wall interfaces

✅ Tracking
 - One user tracked, distorted stereo for users not at viewpoint

✅ User Interface
 - Usually 3-D extension of desktop metaphor
CAVE Weaknesses

✅ Expensive
- ~$1,000,000 fully outfitted
- ~$600,000 SGI computers
- ~$30,000 per projector
Motivation

- Installed MATLAB 5 on SGI Onyx and Pentium
 - Benchmarks on 200 megahertz Pentium Pro ($3000) and 200 megahertz SGI Onyx ($120,000) similar
- Liquid Crystal Projectors sharp, bright, and stable under shock, vibration and temperature variation
- Stereographics Crystal Eyes technology available for Windows NT
MiniCAVE Concept

- Windows NT/Intel Pentium II 466 mhz
- LCD-based projection systems
- 12 ft cubes scaled to 6 ft cubes
- Tracking optional, reduced latency
- Voice command metaphor
- ~$100,000 entry level
VR from Workstation to PC

✓ Project Purpose
 – Can the NT workstation really match the SGI workstation in 3D graphics area?
 – Possibility of VR implementation in PC environment, especially MiniCAVE
 – Explore the hardware and software capacities of PC for VR application
Initial Approach

1. Porting one SGI GL application, SkyFly, to OpenGL, which is a platform-independent 3D API.
2. Porting this application to NT environment.
3. Performance comparison between SGI and NT.
4. Stereo display on PC using CrystalEyes.
5. Controlled by voice command.
✔ Stereo using CrystalEyes
 – Above-below stereo
 – Image resolution 1024x384 each eye
 – Vertical refresh rate 120-150 (60-75 each eye)
 • SGI monitor can handle both 120 and 150
 • CRT projector can only handle 120 refresh rate
Principles of above-below CrystalEyes stereo

- Computer
 - Video signal
 - Graphics Card

- CrystalEye Emitter
 - Double Sync video signal
 - Emitted pulse

- Monitor/Projector
 - Left
 - Right

L R L
Speech Motivation

- User Interfaces (Van Dam)
- Shortcuts in XGobi
- User Controls in the C2 Stats Application
Speech Recognition Products

Dragon Dictate

IBM ViaVoice
Speech Recognition Technology

Evaluation

1. Can you train the software to understand additional words?
2. Is the software speaker dependent or speaker independent?
3. Can you store different pronunciations of one word into the same database so a spoken word is compared with different pronunciations?
4. How good is performance (i.e., percentage of correctly identified words before and after training)?
5. Does accuracy depend on speaker / accent / training?
6. What improves accuracy relative to the various sources of imprecision?
7. How long does it take to reach various levels of performance?
8. What if we aren’t able to train? What should we expect?
What’s the good format for voice-controlled navigation in this application? What are the recommendations on the maximum number of words for the application? What do they suggest as maximum number of words in one command? We currently only have a simple command format: single word, with an around 20 words vocabulary. The generalization appears achievable.
Voice Control

- Command Set
 left, right, up, down, fast, slow, forward, reverse, stop, start.

- Link directly to Dragon Dictate (locally), or link to Custom-DLL (network possible)
Overview of Voice Interface

Hardware
- Microphone

Software
- MiniCAVE Controller
- Command Recognizer
 - Vocabulary
 - Scenario
 - Command

"Command"
Command Recognizer

Requirement: Capture Voice Command & Output Text

Command Recognizer

- Speech Recognition Software
- Visual Basic Command Front End
- Custom Dynamic Linkable Library (.dll)
- Command Vocabulary

API

text
MiniCAVE Controller

Requirement: Capture & Execute Text Command

- Command Vocabulary
- C-Interface
- SkyFly
- Other apps

API

MiniCAVE Controller

Text flow: Command Vocabulary -> MiniCAVE Controller
Approach

✓ Integrate successfully on one machine, then attempt a multi-machine solution

✓ Recognition of spoken word causes delay in SkyFly program on 300 mhz Pentium II - much better on 466 mhz Pentium II
Technical Challenges - Successes

- Port of SkyFly Stereoscopic Demo to NT successful with adequate frame rates on 300 Megahertz Machine
- CrystalEyes interface on NT successful
- Voice Recognition using Dragon Dictate successful
 - But requires Training of Speech Recognizer
Future Directions

- Speech Enhanced Exploration
- MRI Controlled through Speech
- Stat/GIS Application such as ViRGIS
- Military Applications to Command and Control
Remaining Challenges

✓ MiniCAVE Libraries
 – Compatibility to Existing CAVE Libraries

✓ Projection Systems
 – Edge Blending with Digital Projectors
 – Digital Projectors Themselves
 • Frame Rates
 • Decay
 • Image Lock / Stereo Lock
Current Status

✓ Patent Disclosure Filed
✓ CRADA signed with U.S. Army (White Sands Missile Range) - Awaiting Funding
✓ Planned EDA/Data Mining Application with Voice Interface
✓ Major Delay after 300 mhz Machine had been stolen
Contact

✓ Edward Wegman
 – ewegman@gmu.edu
✓ Juergen Symanzik
 – symanzik@galaxy.gmu.edu