Chapter 3.2 Check Your Understanding

Draw a graph whenever helpful.

<table>
<thead>
<tr>
<th>Exercises 1–6 True or False. Give reasons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The function (p(x) = 4x^3 - x) has three real zeros. (\text{Answer:}) True; (p(x) = 4x^3 - x = x(4x^2 - 1) = x(2x + 1)). The zeros are 0, ± (\frac{1}{2}).</td>
</tr>
<tr>
<td>2. The positive zero of (f(x) = x^3 - 3x) is less than 1.73. (\text{Answer:}) False; (x^3 - 3x = 0, x(x^2 - 3) = 0). The zeros are 0, ± (\sqrt{3}). The positive zero (\sqrt{3} (\approx 1.732)) is greater than 1.73.</td>
</tr>
<tr>
<td>3. For (f(x) = x^3 - 1.6x^2 - 8.52x + 15.84), since (f(2)) and (f(3)) are positive, then (f) contains no zeros between 2 and 3. (\text{Answer:}) False; there could be a smaller interval where there is a sign change. Try (x = 2.2).</td>
</tr>
<tr>
<td>4. The equation (2x^3 - 5x^2 + 4x - 1 = 0) has no rational roots. (\text{Answer:}) False; (f(1) = 2 - 5 + 4 - 1 = 0), so 1 is a rational zero.</td>
</tr>
<tr>
<td>5. The function (f(x) = (3x - 2)(x^2 - 2x - 4)) has exactly one real zero. (\text{Answer:}) False; (f(x) = (3x - 2)(x^2 - 2x - 4)) so (x = \frac{2}{3}) or (x = \frac{2\pm\sqrt{4-4(-4)}}{2} = 1 \pm \sqrt{5}).</td>
</tr>
<tr>
<td>6. When (x^3 - 2x^2 + 3x - 16) is divided by (x - 3), then the remainder is 2. (\text{Answer:}) True; carry out the division or evaluate (x^3 - 2x^2 + 3x - 16) at (x = 3). In either case (r = 2).</td>
</tr>
</tbody>
</table>

| Exercises 7–10 Fill in the blank so that the resulting statement is true. |
7. If \(x^3 + 2x^2 + 1 = (x + 1)(x^2 + x - 1) + r \) for every value of \(x \), then \(r = \) ______.

Answer:
Replace \(x \) by \(-1\) in the given equation and see that \(r = 2 \).

8. The number of rational zeros of
\[
f(x) = (x^2 - 2)(x^2 - 2x + 3)
\]
is ______.

Answer:
\(x^2 - 2 = 0 \) gives \(x = \pm \sqrt{2} \) (not rational), \(x^2 - 2x + 3 = 0 \) gives \(x = 1 \pm \sqrt{2}i \). There are no rational roots.

9. The number of real roots of
\[
(x^2 - 2)(x^2 - 2x + 3) = 0
\]
is ______.

Answer:
\(f(x) = (x^2 - 2)(x^2 - 2x + 3) \) so \(x = \pm \frac{\sqrt{4(2)}}{2} = \pm \sqrt{2} \) or \(x = 2 \pm \frac{\sqrt{4 - 12}}{2} = 1 \pm \sqrt{2}i \). Therefore \(f \) has two real roots, \(\pm \sqrt{2} \).

10. If \(x^3 - 2x^2 + 3x - 5 \) is divided by \(x + 1 \), then the remainder is ______.

Answer:
Substitute \(-1\) for \(x \) in \(x^3 - 2x^2 + 3x - 5 \). \((-1)^3 - 2(-1)^2 + 3(-1) - 5 = -5 \). The remainder is \(-5\).