Transformations of Functions: (Part 1)

Horizontal Shifts:

If \(g(x) = f(x + h) \) then the graph of \(g \) can be obtained by shifting the graph of \(f \) to the left by \(h \) units. (subtract \(h \) from every \(x \)-coordinate of the graph of \(f \)).

If \(g(x) = f(x - h) \) then the graph of \(g \) can be obtained by shifting the graph of \(f \) to the right by \(h \) units. (add \(h \) from every \(x \)-coordinate of the graph of \(f \)).

Use a calculator to compare the graphs of
\[
f(x) = x^3, \quad g(x) = (x + 3)^3, \quad h(x) = (x - 3)^3
\]

Use a calculator to compare the graphs of
\[
f(x) = \frac{1}{x^2}, \quad g(x) = \frac{1}{(x + 4)^2}, \quad h(x) = \frac{1}{(x - 5)^2}
\]
Vertical Shifts:

If \(g(x) = f(x) + k \) then the graph of \(g \) can be obtained by shifting the graph of \(f \) up by \(k \) units. (Add \(k \) to every \(y \)-coordinate of the graph of \(f \))

If \(g(x) = f(x) - k \) then the graph of \(g \) can be obtained by shifting the graph of \(f \) down by \(k \) units. (Subtract \(k \) from every \(y \)-coordinate of the graph of \(f \))

Use a calculator to compare the graphs of

\[
f(x) = x^2, \quad g(x) = x^2 + 4, \quad h(x) = x^2 - 3
\]

Let \(f(x) = \sqrt{x} \) and let \(g(x) = \sqrt{x - 2} + 1 \)

Without graphing the functions, write a sentence that compares the graphs of \(f \) and \(g \).
Reflections:

If \(g(x) = -f(x) \) then the graph of \(g \) can be obtained by reflecting the graph of \(f \) across the \(x \)-axis. (Change the sign of every \(y \)-coordinate of the graph of \(f \))

If \(g(x) = f(-x) \) then the graph of \(g \) can be obtained by reflecting the graph of \(f \) across the \(y \)-axis. (Change the sign of every \(x \)-coordinate of the graph of \(f \))

Use a calculator to compare the graphs of \(f(x) = x^2 \), \(g(x) = x^2 + 4 \), \(h(x) = x^2 - 3 \)

Let \(f(x) = \sqrt{x} \) and let \(g(x) = \sqrt{x-2} + 1 \)

Without graphing the functions, write a sentence that compares the graphs of \(f \) and \(g \).
Stretching and Compressing:

Let a be a positive real number.

If $g(x) = af(x)$ then the graph of g can be obtained by *stretching* the graph of f vertically if $a > 1$. (Multiply every y-coordinate of the graph of f by a)

If $g(x) = af(x)$ then the graph of g can be obtained by *compressing* the graph of f vertically if $0 < a < 1$. (Multiply every y-coordinate of the graph of f by a)

Use a calculator to compare the graphs of

$f(x) = \sqrt[3]{x}$, $g(x) = 2\sqrt[3]{x}$, $h(x) = \frac{1}{3}\sqrt[3]{x}$

Let $f(x) = \sqrt{x}$ and let $g(x) = -2\sqrt{x} + 2 - 1$

Without graphing the functions, write a sentence that compares the graphs of f and g.
Below is the graph of a function f. On the blank graph provided, graph the equation $y = -f(x - 2) + 3$.