Example 1 (Newton)

You drop a rock from the top of a cliff at Lake Powell that is 220 feet above the water. How fast is the rock traveling when it hits the water?
\[s(t) = 16t^2, \quad \frac{s(t_0 + h) - s(t_0)}{h} = \]

\[\frac{16(t_0 + h)^2 - 16t_0^2}{h} = \frac{16(t_0^2 + 2ht_0 + h^2) - 16t_0^2}{h} = \]

\[\frac{32ht_0 + 16h^2}{h} = \frac{h(32t_0 + 16h)}{h} = \frac{\text{Av speed}}{v} \]

32t_0 + 16h when h \to 0.

What happens when h gets smaller?

Speed at time \(t_0 = 32t_0 \frac{\text{ft}}{\text{sec}} \)

Lake Powell: \(16t^2 = 220 \)

\(t = 3.7 \text{ sec} \)

speed = \(32(3.7) \frac{\text{ft}}{\text{sec}} = 118.4 \frac{\text{ft}}{\text{sec}} \)

\(118.4 \frac{\text{ft}}{\text{sec}} \cdot \frac{60 \text{ sec}}{\text{min}} \cdot \frac{60 \text{ min}}{1 \text{ hr}} \cdot \frac{1 \text{ mile}}{5,280 \text{ ft}} \)

\(\approx 80 \text{ mph} \)
Example 2 (Leibniz)

How can you determine the maximum and minimum values of a function? On what intervals is it increasing? On what intervals is it decreasing?

\[y = f(x) \]
Example 3

Suppose \(y = f(x) = x^2 + 1 \).

a) Sketch the graph of \(f \).

b) Plot the points \((1, f(1))\) and \((1+h, f(1+h))\).

c) Draw the line containing these two points.

d) Find the slope of this line (secant line).

e) What happens to the slope when \(h \) is closer and closer to zero?

f) Find the equation of the line tangent to the graph of \(f \) at the point \((1, 2)\).
\[y = f(x) = x^2 + 1 \]

\[\text{slope of } L(h) \]
\[= \frac{(1+h)^2 + 1 - 2}{(1+h) - 1} = \frac{1 + 2h + h^2 + 1 - 2}{h} = \frac{2h + h^2}{h} = 2 + h \text{ when } h \to 0 \]

As \(h \) gets closer and closer to 0, the secant line \(L(h) \) gets closer to the tangent line \(T \). The slope \(L(h) \) becomes a better and better approximation to the slope of \(T \) which must be 2.
\[
\frac{y - y_1}{x - x_1} = m
\]

\[
y - y_1 = m(x - x_1)
\]

Example 3

Point is \((1, 2)\)

Slope is 2

\[
y - 2 = 2(x - 1)
\]

or

\[
y = 2x
\]
1.1 Exercise 24

Graph the equation $|x| + |y| = 1$.

1st quadrant: $x + y = 1$ \quad x > 0, y > 0
2nd quadrant: $-x + y = 1$ \quad x < 0, y > 0
3rd quadrant: $-x - y = 1$ \quad x < 0, y < 0
4th quadrant: $x - y = 1$ \quad x > 0, y < 0
1.1 Exercise 4

Find the domain and range of the function g defined by $g(x) = \sqrt{x^2 - 3x}$.

\[x^2 - 3x \geq 0 \quad \Rightarrow \quad x(x-3) \geq 0 \]

\[\begin{array}{cccc}
 + & - & + \\
 0 & 3 \\
\end{array} \]

Domain is $[3, \infty) \cup (-\infty, 0]$

Range is $[0, \infty)$
1.1 Exercise 24

Graph the equation \(|x| + |y| = 1\).

1st quadrant: \(x + y = 1\)
2nd quadrant: \(-x + y = 1\)
3rd quadrant: \(-x - y = 1\)
4th quadrant: \(x - y = 1\)
1.3 Exercise 60

A triangle has sides $a=2$, $b=3$, and angle $C = 40$ degrees. Find the length of side c.

\[
\text{law of cosines: } c^2 = a^2 + b^2 - 2ab \cos \theta
\]
\[
c^2 = 4 + 9 - 2(2)(3) \cos 40^\circ
\]
\[
c^2 = 13 - 12 \cos 40^\circ = 3.807
\]
1.5 Exercise 34

Determine how much time is required for an investment to double in value if interest is earned at the rate of 5.75% continuously.

\[y = Pe^{rt}, \quad y = Pe^{0.0575t} \]

Solve \(e^{0.0575t} = 2 \)

\[e^{0.0575t} = 2 \]

\[\ln (e^{0.0575t}) = \ln 2 \]

\[0.0575t = \ln 2 \]

\[t = \frac{\ln 2}{0.0575} = 12.05 \text{ years} \]

\[t \approx 12 \text{ years} \]

When \(r = 0.10 \),

\[\approx 6.93 \text{ years} \]