Select an Appropriate One Sample Test!!!!

- Is the value of σ known?
 - Yes
 - Is the population normal?
 - Yes
 - Is n large enough $(n \geq 30)$?
 - Yes
 - Use z test:
 \[z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \]
 - No
 - Cannot use z test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non-parametric technique.
 - No
 - Cannot use z test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non-parametric technique.
 - No
 - Is the population normal?
 - Yes
 - Is the population single-peaked and not very skewed?
 - Yes
 - Is n large enough $(n \geq 30)$?
 - Yes
 - Use t test:
 \[t^* = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \]
 - No
 - Cannot use t test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non-parametric technique.
 - No
 - Cannot use t test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non-parametric technique.
 - No
 - Cannot use t test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non-parametric technique.
Select an Appropriate Two Sample Test!!!!

- Are the values of σ_1 and σ_2 known?
 - Yes
 - Are the populations normal?
 - Yes
 - Are n_1 and n_2 large enough (≥ 30)?
 - Yes
 - Use z test:
 \[
 z^* = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
 \]
 $(\mu_1 - \mu_2)$ given by H_0
 - No
 - Cannot use z test!
 What to do? Answer: Increase the sample sizes to at least 30 to conduct the test or use a non parametric technique.
 - No
 - Are n_1 and n_2 large enough (≥ 30)?
 - Yes
 - Use t test:
 \[
 t^* = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
 \]
 $(\mu_1 - \mu_2)$ given by H_0
 - No
 - Cannot use t test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non parametric technique.
 - No
 - Are the populations normal?
 - Yes
 - Are n_1 and n_2 large enough (≥ 30)?
 - Yes
 - Use z test:
 \[
 z^* = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
 \]
 $(\mu_1 - \mu_2)$ given by H_0
 - No
 - Cannot use z test!
 What to do? Answer: Increase the sample sizes to at least 30 to conduct the test or use a non parametric technique.
 - No
 - Are the populations single-peaked and not very skewed?
 - Yes
 - Use t test:
 \[
 t^* = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
 \]
 $(\mu_1 - \mu_2)$ given by H_0
 - No
 - Cannot use t test!
 What to do? Answer: Increase the sample size to at least 30 to conduct the test or use a non parametric technique.