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1 Axioms of Probability

(Based on Casella/Berger, Sections 1.1, 1.2 & 1.3)

1.1 σ–Fields

Let Ω be the sample space of all possible outcomes of a chance experiment. Let ω ∈ Ω (or

x ∈ Ω) be any outcome.

Example:

Count # of heads in n coin tosses. Ω = {0, 1, 2, . . . , n}.

Any subset A of Ω is called an event.

For each event A ⊆ Ω, we would like to assign a number (i.e., a probability). Unfortunately,

we cannot always do this for every subset of Ω.

Instead, we consider classes of subsets of Ω called fields and σ–fields.

Definition 1.1.1:

A class L of subsets of Ω is called a field if Ω ∈ L and L is closed under complements and

finite unions, i.e., L satisfies

(i) Ω ∈ L

(ii) A ∈ L =⇒ AC ∈ L

(iii) A,B ∈ L =⇒ A ∪ B ∈ L

Since ΩC = Ø, (i) and (ii) imply Ø ∈ L. Therefore, (i)’: Ø ∈ L [can replace (i)].

Recall De Morgan’s Laws:

⋃

A∈A
A = ... and

⋂

A∈A
A = ... .

Note:

So (ii), (iii) imply (iii)’: A,B ∈ L =⇒ A ∩ B ∈ L [can replace (iii)].
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Proof:

A,B ∈ L =⇒ ...

Definition 1.1.2:

A class L of subsets of Ω is called a σ–field (Borel field, σ–algebra) if it is a field and closed

under countable unions, i.e.,

(iv) {An}∞n=1 ∈ L =⇒
∞⋃

n=1

An ∈ L.

Note:

(iv) implies (iii) by taking An = Ø for n ≥ 3.

Example 1.1.3:

For some Ω, let L contain all finite and all cofinite sets (A is cofinite if AC is finite — for

example, if Ω = IN , A = {x | x ≥ c} is not finite but since AC = {x | x < c} is finite, A is

cofinite). Then L is a field. But L is a σ–field iff (if and only if) Ω is finite.

For example, let Ω = Z. Take An = {n}, each finite, so An ∈ L. But
∞⋃

n=1

An = Z+ 6∈ L, since

the set is not finite (it is infinite) and also not cofinite (

(
∞⋃

n=1

An

)C

= Z−
0 is infinite, too).

Question: Does this construction work for Ω = Z+ ??

Note:

The largest σ–field in Ω is the power set P(Ω) of all subsets of Ω. The smallest σ–field is

L = {Ø,Ω}.

Terminology:

A set A ∈ L is said to be “measurable L”.
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Note:

We often begin with a class of sets, say a, which may not be a field or a σ–field.

Definition 1.1.4:

The σ–field generated by a, σ(a), is the smallest σ–field containing a, or the intersection of

all σ–fields containing a.

Note:

(i) Such σ–fields containing a always exist (e.g., P(Ω)), and (ii) the intersection of an arbitrary

# of σ–fields is always a σ–field.

Proof:

(ii) Suppose L =
⋂

θ

Lθ. We have to show that conditions (i) and (ii) of Def. 1.1.1 and (iv) of

Def. 1.1.2 are fulfilled:

Example 1.1.5:

Ω = {0, 1, 2, 3}, a = {{0}}, b = {{0}, {0, 1}}.

What is σ(a)?

What is σ(b)?
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If Ω is finite or countable, we will usually use L = P(Ω). If | Ω |= n < ∞, then | L |= 2n.

If Ω is uncountable, P(Ω) may be too large to be useful and we may have to use some smaller

σ–field.

Definition 1.1.6:

If Ω = IR, an important special case is the Borel σ–field, i.e., the σ–field generated from all

half–open intervals of the form (a, b], denoted B or B1. The sets of B are called Borel sets.

The Borel σ–field on IRd (Bd) is the σ–field generated by d–dimensional rectangles of the form

{(x1, x2, . . . , xd) | ai < xi ≤ bi; i = 1, 2, . . . , d}.

Note:

B contains all points: {x} =
∞⋂

n=1

...

closed intervals: [x, y] =

open intervals: (x, y) =

and semi–infinite intervals: (x,∞) =

We now have a measurable space (Ω, L). We next define a probability measure P (·) on (Ω, L)

to obtain a probability space (Ω, L, P ).

Definition 1.1.7: Kolmogorov Axioms of Probability

A probability measure (pm), P , on (Ω, L) is a set function P : L → IR satisfying

(i) 0 ≤ P (A) ∀A ∈ L

(ii) P (Ω) = 1

(iii) If {An}∞n=1 are disjoint sets in L and
∞⋃

n=1

An ∈ L, then P (
∞⋃

n=1

An) =
∞∑

n=1

P (An).

Note:
∞⋃

n=1

An ∈ L holds automatically if L is a σ–field but it is needed as a precondition in the case

that L is just a field. Property (iii) is called countable additivity.
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1.2 Manipulating Probability

Theorem 1.2.1:

For P a pm on (Ω, L), it holds:

(i) P (Ø) = 0

(ii) P (AC) = 1 − P (A) ∀A ∈ L

(iii) P (A) ≤ 1 ∀A ∈ L

(iv) P (A ∪ B) = P (A) + P (B) − P (A ∩ B) ∀A,B ∈ L

(v) If A ⊆ B, then P (A) ≤ P (B).

Proof:
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Theorem 1.2.2: Principle of Inclusion–Exclusion

Let A1, A2, . . . , An ∈ L. Then

P (
n⋃

k=1

Ak) =
n∑

k=1

P (Ak)−
n∑

k1<k2

P (Ak1∩Ak2)+
n∑

k1<k2<k3

P (Ak1∩Ak2∩Ak3)−. . .+(−1)n+1P (
n⋂

k=1

Ak)

Proof:

n = 1 is trivial

n = 2 is Theorem 1.2.1 (iv)

use induction for higher n (Homework)

Note:

A proof by induction consists of two steps:

First, we have to establish the induction base. For example, if we state that something

holds for all non–negative integers, then we have to show that it holds for n = 0. Similarly, if

we state that something holds for all integers, then we have to show that it holds for n = 1.

Formally, it is sufficient to verify a claim for the smallest valid integer only. However, to get

some feeling how the proof from n to n + 1 might work, it is sometimes beneficial to verify a

claim for 1, 2, or 3 as well.

In the second step, we have to establish the result in the induction step, showing that some-

thing holds for n + 1, using the fact that it holds for n (alternatively, we can show that it

holds for n, using the fact that it holds for n − 1).

Theorem 1.2.3: Bonferroni’s Inequality

Let A1, A2, . . . , An ∈ L. Then

n∑

i=1

P (Ai) −
∑

i<j

P (Ai ∩ Aj) ≤ P (
n⋃

i=1

Ai) ≤
n∑

i=1

P (Ai)

Proof:
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Theorem 1.2.4: Boole’s Inequality

Let A,B ∈ L. Then

(i) P (A ∩ B) ≥ P (A) + P (B) − 1

(ii) P (A ∩ B) ≥ 1 − P (AC) − P (BC)

Proof:

Homework

Definition 1.2.5: Continuity of sets

For a sequence of sets {An}∞n=1, An ∈ L and A ∈ L, we say

(i) An ↑ A if A1 ⊆ A2 ⊆ A3 ⊆ . . . and A =
∞⋃

n=1

An.

(ii) An ↓ A if A1 ⊇ A2 ⊇ A3 ⊇ . . . and A =
∞⋂

n=1

An.

Example:

Theorem 1.2.6:

If {An}∞n=1, An ∈ L and A ∈ L, then lim
n→∞

P (An) = P (A) if 1.2.5 (i) or 1.2.5 (ii) holds.

Proof:
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Theorem 1.2.7:

(i) Countable unions of probability 0 sets have probability 0.

(ii) Countable intersections of probability 1 sets have probability 1.

Proof:
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1.3 Combinatorics and Counting

For now, we restrict ourselves to sample spaces containing a finite number of points.

Let Ω = {ω1, . . . , ωn} and L = P(Ω). For any A ∈ L,P (A) =
∑

ωj∈A

P (ωj).

Definition 1.3.1:

We say the elements of Ω are equally likely (or occur with uniform probability) if

P (ωj) = 1
n ∀j = 1, . . . , n.

Note:

If this is true, P (A) =
number ωj in A
number ωj in Ω

. Therefore, to calculate such probabilities, we just

need to be able to count elements accurately.

Theorem 1.3.2: Fundamental Theorem of Counting

If we wish to select one element (a1) out of n1 choices, a second element (a2) out of n2 choices,

and so on for a total of k elements, there are

n1 × n2 × n3 × . . . × nk

ways to do it.

Proof: (By Induction)

Induction Base:

k = 1: trivial

k = 2: n1 ways to choose a1. For each, n2 ways to choose a2.

Total # of ways = n2 + n2 + . . . + n2
︸ ︷︷ ︸

n1 times

= n1 × n2.

Induction Step:

Suppose it is true for (k − 1). We show that it is true for k = (k − 1) + 1.

There are n1 × n2 × n3 × . . . × nk−1 ways to select one element (a1) out of n1 choices, a

second element (a2) out of n2 choices, and so on, up to the (k − 1)th element (ak−1) out of

nk−1 choices. For each of these n1 × n2 × n3 × . . .× nk−1 possible ways, we can select the kth

element (ak) out of nk choices. Thus, the total # of ways = (n1 ×n2 ×n3 × . . .× nk−1)× nk.
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Definition 1.3.3:

For positive integer n, we define n factorial as n! = n×(n−1)×(n−2)×. . .×2×1 = n×(n−1)!

and 0! = 1.

Definition 1.3.4:

For nonnegative integers n ≥ r, we define the binomial coefficient (read as n choose r) as
(

n

r

)

=
n!

r!(n − r)!
=

n · (n − 1) · (n − 2) · . . . · (n − r + 1)

1 · 2 · 3 · . . . · r .

Note:

A useful extension for the binomial coefficient for n < r is
(

n

r

)

=
n · (n − 1) · . . . · 0 · . . . · (n − r + 1)

1 · 2 · . . . · r = 0.

Note:

Most counting problems consist of drawing a fixed number of times from a set of elements

(e.g., {1, 2, 3, 4, 5, 6}). To solve such problems, we need to know

(i) the size of the set, n;

(ii) the size of the sample, r;

(iii) whether the result will be ordered (i.e., is {1, 2} different from {2, 1}); and

(iv) whether the draws are with replacement (i.e, can results like {1, 1} occur?).

Theorem 1.3.5:

The number of ways to draw r elements from a set of n, if

(i) ordered, without replacement, is n!
(n−r)! ;

(ii) ordered, with replacement, is nr;

(iii) unordered, without replacement, is n!
r!(n−r)! =

(n
r

)
;

(iv) unordered, with replacement, is (n+r−1)!
r!(n−1)! =

(n+r−1
r

)
.

Proof:

(i)
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Corollary:

The number of permutations of n objects is n!.

(ii)

Theorem 1.3.6: The Binomial Theorem

If n is a non–negative integer, then

(1 + x)n =
n∑

r=0

(

n

r

)

xr

Proof: (By Induction)

Induction Base:
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Corollary 1.3.7:

For integers n, it holds:

(i)

(

n

0

)

+

(

n

1

)

+ . . . +

(

n

n

)

= 2n, n ≥ 0

(ii)

(

n

0

)

−
(

n

1

)

+

(

n

2

)

−
(

n

3

)

+ . . . + (−1)n
(

n

n

)

= 0, n ≥ 1

(iii) 1 ·
(

n

1

)

+ 2 ·
(

n

2

)

+ 3 ·
(

n

3

)

+ . . . + n ·
(

n

n

)

= n2n−1, n ≥ 0

(iv) 1 ·
(

n

1

)

− 2 ·
(

n

2

)

+ 3 ·
(

n

3

)

+ . . . + (−1)n−1n ·
(

n

n

)

= 0, n ≥ 2

Proof:
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Theorem 1.3.8:

For non–negative integers, n,m, r, it holds:

(i)

(

n − 1

r

)

+

(

n − 1

r − 1

)

=

(

n

r

)

(ii)

(

n

0

)(

m

r

)

+

(

n

1

)(

m

r − 1

)

+ . . . +

(

n

r

)(

m

0

)

=

(

m + n

r

)

(iii)

(

0

r

)

+

(

1

r

)

+

(

2

r

)

+ . . . +

(

n

r

)

=

(

n + 1

r + 1

)

Proof:

Homework
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1.4 Conditional Probability and Independence

So far, we have computed probability based only on the information that Ω is used for a prob-

ability space (Ω, L, P ). Suppose, instead, we know that event H ∈ L has happened. What

statement should we then make about the chance of an event A ∈ L ?

Definition 1.4.1:

Given (Ω, L, P ) and H ∈ L,P (H) > 0, and A ∈ L, we define

P (A|H) =
P (A ∩ H)

P (H)
= PH(A)

and call this the conditional probability of A given H.

Note:

This is undefined if P (H) = 0.

Theorem 1.4.2:

In the situation of Definition 1.4.1, (Ω, L, PH ) is a probability space.

Proof:

If PH is a probability measure, it must satisfy Def. 1.1.7.
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Note:

What we have done is to move to a new sample space H and a new σ–field LH = L ∩ H of

subsets A∩H for A ∈ L. We thus have a new measurable space (H, LH) and a new probability

space (H, LH , PH).

Note:

From Definition 1.4.1, if A,B ∈ L,P (A) > 0, and P (B) > 0, then

P (A ∩ B) = P (A)P (B|A) = P (B)P (A|B),

which generalizes to

Theorem 1.4.3: Multiplication Rule

If A1, . . . , An ∈ L and P (
n−1⋂

j=1

Aj) > 0, then

P (
n⋂

j=1

Aj) = P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · . . . · P (An|
n−1⋂

j=1

Aj).

Proof:

Homework

Definition 1.4.4:

A collection of subsets {An}∞n=1 of Ω form a partition of Ω if

(i)
∞⋃

n=1

An = Ω, and

(ii) Ai ∩ Aj = Ø ∀i 6= j, i.e., elements are pairwise disjoint.

Theorem 1.4.5: Law of Total Probability

If {Hj}∞j=1 is a partition of Ω, and P (Hj) > 0 ∀j, then, for A ∈ L,

P (A) =
∞∑

j=1

P (A ∩ Hj) =
∞∑

j=1

P (Hj)P (A|Hj).

Proof:

By the Note preceding Theorem 1.4.3, the summands on both sides are equal

15



=⇒ the right side of Th. 1.4.5 is true.

The left side proof:

Theorem 1.4.6: Bayes’ Rule

Let {Hj}∞j=1 be a partition of Ω, and P (Hj) > 0 ∀j. Let A ∈ L and P (A) > 0. Then

P (Hj|A) =
P (Hj)P (A|Hj)

∞∑

n=1

P (Hn)P (A|Hn)

∀j.

Proof:

Definition 1.4.7:

For A,B ∈ L, A and B are independent iff P (A ∩ B) = P (A)P (B).

Note:

• There are no restrictions on P (A) or P (B).

• If A and B are independent, then P (A|B) = P (A) (given that P (B) > 0) and P (B|A) =

P (B) (given that P (A) > 0).

• If A and B are independent, then the following events are independent as well: A and

BC ; AC and B; AC and BC .

16



Definition 1.4.8:

Let A be a collection of L–sets. The events of A are pairwise independent iff for every

distinct A1, A2 ∈ A it holds P (A1 ∩ A2) = P (A1)P (A2).

Definition 1.4.9:

Let A be a collection of L–sets. The events of A are mutually independent (or completely

independent) iff for every finite subcollection {Ai1 , . . . , Aik}, Aij ∈ A, it holds P (
k⋂

j=1

Aij ) =

k∏

j=1

P (Aij ).

Note:

To check for mutually independence of n events {A1, . . . , An} ∈ L, there are 2n − n − 1 rela-

tions (i.e., all subcollections of size 2 or more) to check.

Example 1.4.10:

Flip a fair coin twice. Ω = {HH,HT, TH, TT}.
A1 = “H on 1st toss”

A2 = “H on 2nd toss”

A3 = “Exactly one H”

Obviously, P (A1) = P (A2) = P (A3) = 1
2 .

Question: Are A1, A2 and A3 pairwise independent and also mutually independent?

Example 1.4.11: (from Rohatgi, page 37, Example 5)

• r students. 365 possible birthdays for each student that are equally likely.

• One student at a time is asked for his/her birthday.

17



• If one of the other students hears this birthday and it matches his/her birthday, this

other student has to raise his/her hand — if at least one other student raises his/her

hand, the procedure is over.

• We are interested in

pk = P (procedure terminates at the kth student)

= P (a hand is first risen when the kth student is asked for his/her birthday)

• The textbook (Rohatgi) claims (without proof) that

p1 = 1 −
(

364

365

)r−1

and

pk =

(
365Pk−1

(365)k−1

)(

1 − k − 1

365

)r−k+1
[

1 −
(

365 − k

365 − k + 1

)r−k
]

, k = 2, 3, . . . ,

where nPr = n · (n − 1) · . . . · (n − r + 1).

Proof:

It is

p1 = P (at least 1 other (from r-1) students has a birthday on this particular day.)

= 1 − P (all (r-1) students have a birthday on the remaining 364 out of 365 days)

= 1 −
(

364

365

)r−1

p2 = P (no student has a birthday matching the first student and at least one

of the other (r-2) students has a b-day matching the second student)

Let A ≡ No student has a b-day matching the 1ststudent

Let B ≡ At least one of the other (r-2) has b-day matching 2nd
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For general pk and restrictions on r and k see Homework.
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2 Random Variables

(Based on Casella/Berger, Sections 1.4, 1.5, 1.6 & 2.1)

2.1 Measurable Functions

Definition 2.1.1:

• A random variable (rv) is a set function from Ω to IR.

• More formally: Let (Ω, L, P ) be any probability space. Suppose X : Ω → IR and that

X is a measurable function, then we call X a random variable.

• More generally: If X : Ω → IRk, we call X a random vector, X = (X1(ω),X2(ω), . . . ,Xk(ω)).

What does it mean to say that a function is measurable?

Definition 2.1.2:

Suppose (Ω, L) and (S,B) are two measurable spaces and X : Ω → S is a mapping from

Ω to S. We say that X is measurable L − B if X−1(B) ∈ L for every set B ∈ B, where

X−1(B) = {ω ∈ Ω : X(ω) ∈ B}.

Example 2.1.3:

Record the opinion of 50 people: “yes” (y) or “no” (n).

Ω = {All 250 possible sequences of y/n} — HUGE !

L = P(Ω)

(i) Consider X : Ω → S = {All 250 possible sequences of 1 (= y) and 0 (= n)}
B = P(S)

X is a random vector since each element in S has a corresponding element in Ω,

for B ∈ B,X−1(B) ∈ L = P(Ω).

(ii) Consider X : Ω → S = {0, 1, 2, . . . , 50}, where X(ω) = “# of y’s in ω” is a more manage-

able random variable.

A simple function, i.e., a function that takes only finite many values x1, . . . , xk, is measurable

iff X−1(xi) ∈ L ∀xi.

Here, X−1(k) = {ω ∈ Ω : # y’s in sequence ω = k} is a subset of Ω, so it is in L = P(Ω).

20



Example 2.1.4:

Let Ω = “infinite fair coin tossing space”, i.e., infinite sequence of H’s and T’s.

Let Ln be a σ–field for the 1st n tosses.

Define L = σ(
∞⋃

n=1

Ln).

Let Xn : Ω → IR be Xn(ω) = “proportion of H’s in 1st n tosses”.

For each n, Xn(·) is simple (values {0, 1
n , 2

n , . . . , n
n}) and X−1

n ( k
n) ∈ Ln ∀k = 0, 1, . . . , n.

Therefore, X−1
n ( k

n) ∈ L.

So every random variable Xn(·) is measurable L−B. Now we have a sequence of rv’s {Xn}∞n=1.

We will show later that P ({ω : Xn(ω) → 1
2}) = 1, i.e., the Strong Law of Large Numbers

(SLLN).

Some Technical Points about Measurable Functions

2.1.5:

Suppose (Ω, L) and (S,B) are measure spaces and that a collection of sets A generates B, i.e.,

σ(A) = B. Let X : Ω → S. If X−1(A) ∈ L ∀A ∈ A, then X is measurable L − B.

This means we only have to check measurability on a basis collection A. The usage is: B on

IR is generated by {(−∞, x] : x ∈ IR}.

2.1.6:

If (Ω, L), (Ω′, L′), and (Ω′′, L′′) are measure spaces and X : Ω → Ω′ and Y : Ω′ → Ω′′ are

measurable, then the composition (Y X) : Ω → Ω′′ is measurable L − L′′.

2.1.7:

If f : IRi → IRk is a continuous function, then f is measurable Bi − Bk.

2.1.8:

If fj : Ω → IR, j = 1, . . . k and g : IRk → IR are measurable, then g(f1(·), . . . , fk(·)) is measur-

able.

The usage is: g could be sum, average, difference, product, (finite) maximums and minimums

of x1, . . . , xk, etc.

2.1.9:

Limits: Extend the real line to [−∞,∞] = IR ∪ {−∞,∞}.
We say f : Ω → IR is measurable L − B if
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(i) f−1(B) ∈ L ∀B ∈ B, and

(ii) f−1(−∞), f−1(∞) ∈ L also.

2.1.10:

Suppose f1, f2, . . . is a sequence of real–valued measurable functions (Ω, L) → (IR,B). Then

it holds:

(i) sup
n→∞

fn (supremum), inf
n→∞

fn (infimum), lim
n→∞

sup fn (limit superior), and lim
n→∞

inf fn

(limit inferior) are measurable.

(ii) If f = lim
n→∞

fn exists, then f is measurable.

(iii) The set {ω : fn(ω) converges} ∈ L.

(iv) If f is any measurable function, the set {ω : fn(ω) → f(ω)} ∈ L.

Example 2.1.11:

(i) Let

fn(x) =
1

xn
, x > 1.

It holds

• sup
n→∞

fn(x) =
1

x

• inf
n→∞

fn(x) = 0

• lim
n→∞

sup fn(x) = 0

• lim
n→∞

inf fn(x) = 0

• lim
n→∞

fn(x) = lim
n→∞

sup fn(x) = lim
n→∞

inf fn(x) = 0

(ii) Let

fn(x) =

{

x3, x ∈ [−n, n]

0, otherwise

It holds

• sup
n→∞

fn(x) =

{

x3, x ≥ −1

0, otherwise

• inf
n→∞

fn(x) =

{

x3, x ≤ 1

0, otherwise
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• lim
n→∞

sup fn(x) = x3

• lim
n→∞

inf fn(x) = x3

• lim
n→∞

fn(x) = lim
n→∞

sup fn(x) = lim
n→∞

inf fn(x) = x3

(iii) Let

fn(x) =

{

(−1)nx3, x ∈ [−n, n]

0, otherwise

It holds

• sup
n→∞

fn(x) =| x |3

• inf
n→∞

fn(x) = − | x |3

• lim
n→∞

sup fn(x) =| x |3

• lim
n→∞

inf fn(x) = − | x |3

• lim
n→∞

fn(x) = lim
n→∞

sup fn(x) = lim
n→∞

inf fn(x) = 0 if x = 0, but lim
n→∞

fn(x) does not

exist for x 6= 0 since lim
n→∞

sup fn(x) 6= lim
n→∞

inf fn(x) for x 6= 0
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2.2 Probability Distribution of a Random Variable

The definition of a random variable X : (Ω, L) → (S,B) makes no mention of P . We now

introduce a probability measure on (S,B).

Theorem 2.2.1:

A random variable X on (Ω, L, P ) induces a probability measure on a space (IR,B, Q) with

the probability distribution Q of X defined by

Q(B) = P (X−1(B)) = P ({ω : X(ω) ∈ B}) ∀B ∈ B.

Note:

By the definition of a random variable, X−1(B) ∈ L ∀B ∈ B. Q is called induced proba-

bility

Proof:

If X induces a probability measure Q on (IR,B), then Q must satisfy the Kolmogorov Axioms

of probability.

X : (Ω, L) → (S,B). X is a rv ⇒ X−1(B) = {ω : X(ω) ∈ B} = A ∈ L ∀B ∈ B.

Definition 2.2.2:

A real–valued function F on (−∞,∞) that is non–decreasing, right–continuous, and satisfies

F (−∞) = 0, F (∞) = 1

is called a cumulative distribution function (cdf) on IR.

Note:

No mention of probability space or measure P in Definition 2.2.2 above.

Definition 2.2.3:

Let P be a probability measure on (IR,B). The cdf associated with P is

F (x) = FP (x) = P ((−∞, x]) = P ({ω : X(ω) ≤ x}) = P (X ≤ x)
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for a random variable X defined on (IR,B, P ).

Note:

F (·) defined as in Definition 2.2.3 above indeed is a cdf.

Proof:
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Note that (iii) and (iv) implicitly use Theorem 1.2.6. In (iii), we use An = (−∞,−n) where

An ⊃ An+1 and An ↓ ∅. In (iv), we use An = (−∞, n) where An ⊂ An+1 and An ↑ IR.

Definition 2.2.4:

If a random variable X : Ω → IR has induced a probability measure PX on (IR,B) with cdf

F (x), we say

(i) rv X is continuous if F (x) is continuous in x.

(ii) rv X is discrete if F (x) is a step function in x.

Note:

There are rvs that are mixtures of continuous and discrete rvs. One such example is a trun-

cated failure time distribution. We assume a continuous distribution (e.g., exponential) up

to a given truncation point x and assign the “remaining” probability to the truncation point.

Thus, a single point has a probability > 0 and F (x) jumps at the truncation point x.

Definition 2.2.5:

Two random variables X and Y are identically distributed iff PX(X ∈ A) = PY (Y ∈
A) ∀A ∈ L.

Note:

Def. 2.2.5 does not mean that X(ω) = Y (ω) ∀ω ∈ Ω. For example,
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X = # H in 3 coin tosses

Y = # T in 3 coin tosses

X,Y are both Bin(3, 0.5), i.e., identically distributed, but for ω = (H,H, T ),X(ω) = 2 6= 1 =

Y (ω), i.e., X 6= Y .

Theorem 2.2.6:

The following two statements are equivalent:

(i) X,Y are identically distributed.

(ii) FX(x) = FY (x) ∀x ∈ IR.

Proof:

(i) ⇒ (ii):

(ii) ⇒ (i):

Requires extra knowledge from measure theory.
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2.3 Discrete and Continuous Random Variables

We now extend Definition 2.2.4 to make our definitions a little bit more formal.

Definition 2.3.1:

Let X be a real–valued random variable with cdf F on (Ω, L, P ). X is discrete if there exists

a countable set E ⊂ IR such that P (X ∈ E) = 1, i.e., P ({ω : X(ω) ∈ E}) = 1. The points of E

which have positive probability are the jump points of the step function F , i.e., the cdf of X.

Define pi = P ({ω : X(ω) = xi, xi ∈ E}) = PX(X = xi) ∀i ≥ 1. Then, pi ≥ 0,
∞∑

i=1

pi = 1.

We call {pi : pi ≥ 0} the probability mass function (pmf) (also: probability frequency

function) of X.

Note:

Given any set of numbers {pn}∞n=1, pn ≥ 0 ∀n ≥ 1,
∞∑

n=1

pn = 1, {pn}∞n=1 is the pmf of some rv

X.

Note:

The issue of continuous rv’s and probability density functions (pdfs) is more complicated. A

rv X : Ω → IR always has a cdf F . Whether there exists a function f such that f integrates

to F and F ′ exists and equals f (almost everywhere) depends on something stronger than

just continuity.

Definition 2.3.2:

A real–valued function F is continuous in x0 ∈ IR iff

∀ǫ > 0 ∃δ > 0 ∀x : | x − x0 |< δ ⇒| F (x) − F (x0) |< ǫ.

F is continuous iff F is continuous in all x ∈ IR.
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Definition 2.3.3:

A real–valued function F defined on [a, b] is absolutely continuous on [a, b] iff

∀ǫ > 0 ∃δ > 0 ∀ finite subcollection of disjoint subintervals [ai, bi], i = 1, . . . , n :

n∑

i=1

(bi − ai) < δ ⇒
n∑

i=1

| F (bi) − F (ai) |< ǫ.

Note:

Absolute continuity implies continuity.

Theorem 2.3.4:

(i) If F is absolutely continuous, then F ′ exists almost everywhere.

(ii) A function F is an indefinite integral iff it is absolutely continuous. Thus, every abso-

lutely continuous function F is the indefinite integral of its derivative F ′.

Definition 2.3.5:

Let X be a random variable on (Ω, L, P ) with cdf F . We say X is a continuous rv iff F

is absolutely continuous. In this case, there exists a non–negative integrable function f , the

probability density function (pdf) of X, such that

F (x) =

∫ x

−∞
f(t)dt = P (X ≤ x).

From this it follows that, if a, b ∈ IR, a < b, then

PX(a < X ≤ b) = F (b) − F (a) =

∫ b

a
f(t)dt

exists and is well defined.

Theorem 2.3.6:

Let X be a continuous random variable with pdf f . Then it holds:

(i) For every Borel set B ∈ B, P (B) =

∫

B
f(t)dt.

(ii) If F is absolutely continuous and f is continuous at x, then F ′(x) = dF (x)
dx = f(x).
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Proof:

Part (i): From Definition 2.3.5 above.

Part (ii): By Fundamental Theorem of Calculus.

Note:

As already stated in the Note following Definition 2.2.4, not every rv will fall into one of

these two (or if you prefer – three –, i.e., discrete, continuous/absolutely continuous) classes.

However, most rv which arise in practice will. We look at one example that is unlikely to

occur in practice in the next Homework assignment.

However, note that every cdf F can be written as

F (x) = aFd(x) + (1 − a)Fc(x), 0 ≤ a ≤ 1,

where Fd is the cdf of a discrete rv and Fc is a continuous (but not necessarily absolute

continuous) cdf.

Some authors, such as Marek Fisz Wahrscheinlichkeitsrechnung und mathematische Statistik,

VEB Deutscher Verlag der Wissenschaften, Berlin, 1989, are even more specific. There it is

stated that every cdf F can be written as

F (x) = a1Fd(x) + a2Fc(x) + a3Fs(x), a1, a2, a3 ≥ 0, a1 + a2 + a3 = 1.

Here, Fd(x) and Fc(x) are discrete and continuous cdfs (as above). Fs(x) is called a singu-

lar cdf. Singular means that Fs(x) is continuous and its derivative F ′(x) equals 0 almost

everywhere (i.e., everywhere but in those points that belong to a Borel–measurable set of

probability 0).

Question: Does “continuous” but “not absolutely continuous” mean “singular”? — We will

(hopefully) see later. . .

Example 2.3.7:

Consider

F (x) =







0, x < 0

1/2, x = 0

1/2 + x/2, 0 < x < 1

1, x ≥ 1

We can write F (x) as aFd(x) + (1 − a)Fc(x), 0 ≤ a ≤ 1. How?
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Definition 2.3.8:

The two–valued function IA(x) is called indicator function and it is defined as follows:

IA(x) = 1 if x ∈ A and IA(x) = 0 if x 6∈ A for any set A.
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An Excursion into Logic

When proving theorems we only used direct methods so far. We used induction proofs to

show that something holds for arbitrary n. To show that a statement A implies a statement

B, i.e., A ⇒ B, we used proofs of the type A ⇒ A1 ⇒ A2 ⇒ . . . ⇒ An−1 ⇒ An ⇒ B where

one step directly follows from the previous step. However, there are different approaches to

obtain the same result.

Basic Operators:

Boolean Logic makes assertions on statements that can either be true (represented as 1) or

false (represented as 0). Basic operators are “not” (¬), “and” (∧), “or” (∨), “implies” (⇒),

“equivalent” (⇔), and “exclusive or” (⊕).

These operators are defined as follows:

A B ¬A ¬B A ∧ B A ∨ B A ⇒ B A ⇔ B A ⊕ B

1 1 0 0 1 1 1 1 0

1 0 0 1 0 1 0 0 1

0 1 1 0 0 1 1 0 1

0 0 1 1 0 0 1 1 0

Implication: (A implies B)

A ⇒ B is equivalent to ¬B ⇒ ¬A is equivalent to ¬A ∨ B:

A B A ⇒ B ¬A ¬B ¬B ⇒ ¬A ¬A ∨ B

1 1 1

1 0 0

0 1 1

0 0 1

Equivalence: (A is equivalent to B)

A ⇔ B is equivalent to (A ⇒ B) ∧ (B ⇒ A) is equivalent to (¬A ∨ B) ∧ (A ∨ ¬B):
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A B A ⇔ B A ⇒ B B ⇒ A (A ⇒ B) ∧ (B ⇒ A) ¬A ∨ B A ∨ ¬B (¬A ∨ B) ∧ (A ∨ ¬B)

1 1 1

1 0 0

0 1 0

0 0 1

Negations of Quantifiers:

The quantifiers “for all” (∀) and “it exists” (∃) are used to indicate that a statement holds for

all possible values or that there exists such a value that makes the statement true, respectively.

When negating a statement with a quantifier, this means that we flip from one quantifier to

the other with the remaining statement negated as well, i.e., ¬∀ becomes ∃ and ¬∃ becomes

∀.

¬∀x ∈ X : B(x) is equivalent to ...

¬∃x ∈ X : B(x) is equivalent to ...

∃x ∈ X ∀y ∈ Y : B(x, y) implies ...
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2.4 Transformations of Random Variables

Let X be a real–valued random variable on (Ω, L, P ), i.e., X : (Ω, L) → (IR,B). Let g be

any Borel–measurable real–valued function on IR. Then, by statement 2.1.6, Y = g(X) is a

random variable.

Theorem 2.4.1:

Given a random rariable X with known induced distribution and a Borel–measurable function

g, then the distribution of the random variable Y = g(X) is determined.

Proof:

Note:

From now on, we restrict ourselves to real–valued (vector–valued) functions that are Borel–

measurable, i.e., measurable with respect to (IR,B) or (IRk,Bk).

More generally, PY (Y ∈ C) = PX(X ∈ g−1(C)) ∀C ∈ B.

Example 2.4.2:

Suppose X is a discrete random variable. Let A be a countable set such that P (X ∈ A) = 1

and P (X = x) > 0 ∀x ∈ A.

Let Y = g(X). Obviously, the sample space of Y is also countable. Then,

PY (Y = y) =
∑

x∈g−1({y})

PX(X = x) =
∑

{x:g(x)=y}

PX(X = x) ∀y ∈ g(A)

Example 2.4.3:

X ∼ U(−1, 1) so the pdf of X is fX(x) = 1/2I[−1,1](x), which, according to Definition 2.3.8,

reads as fX(x) = 1/2 for −1 ≤ x ≤ 1 and 0 otherwise.

Let Y = X+ =

{

x, x ≥ 0

0, otherwise
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Then,

Note:

We need to put some conditions on g to ensure g(X) is continuous if X is continuous and

avoid cases as in Example 2.4.3 above.

Definition 2.4.4:

For a random variable X from (Ω, L, P ) to (IR,B), the support of X (or P ) is any set A ∈ L

for which P (A) = 1. For a continuous random variable X with pdf f , we can think of the

support of X as X = X−1({x : fX(x) > 0}).

Definition 2.4.5:

Let f be a real–valued function defined on D ⊆ IR,D ∈ B. We say:

f is non–decreasing if x < y =⇒ f(x) ≤ f(y) ∀x, y ∈ D

f is strictly non–decreasing (or increasing) if x < y =⇒ f(x) < f(y) ∀x, y ∈ D

f is non–increasing if x < y =⇒ f(x) ≥ f(y) ∀x, y ∈ D

f is strictly non–increasing (or decreasing) if x < y =⇒ f(x) > f(y) ∀x, y ∈ D

f is monotonic on D if f is either increasing or decreasing and write f ↑ or f ↓.

Theorem 2.4.6:

Let X be a continuous rv with pdf fX and support X. Let y = g(x) be differentiable for all x

and either (i) g′(x) > 0 or (ii) g′(x) < 0 for all x.

Then, Y = g(X) is also a continuous rv with pdf

fY (y) = fX(g−1(y))· | d

dy
g−1(y) | ·Ig(X)(y).
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Proof:
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Note:

In Theorem 2.4.6, we can also write

fY (y) =
f(x)

| dg(x)
dx |

∣
∣
∣
∣
∣
x=g−1(y)

, y ∈ g(X)

If g is monotonic over disjoint intervals, we can also get an expression for the pdf/cdf of

Y = g(X) as stated in the following theorem:

Theorem 2.4.7:

Let Y = g(X) where X is a rv with pdf fX(x) on support X. Suppose there exists a partition

A0, A1, . . . , Ak of X such that P (X ∈ A0) = 0 and fX(x) is continuous on each Ai. Suppose

there exist functions g1(x), . . . , gk(x) defined on A1 through Ak, respectively, satisfying

(i) g(x) = gi(x) ∀x ∈ Ai,

(ii) gi(x) is monotonic on Ai,

(iii) the set Y = gi(Ai) = {y : y = gi(x) for some x ∈ Ai} is the same for each i = 1, . . . , k,

and

(iv) g−1
i (y) has a continuous derivative on Y for each i = 1, . . . , k.

Then,

fY (y) =
k∑

i=1

fX(g−1
i (y))· | d

dy
g−1
i (y) | ·IY(y)

Example 2.4.8:

Let X be a rv with pdf fX(x) = 2x
π2 · I(0,π)(x).

Let Y = sin(X). What is fY (y)?

Since sin is not monotonic on (0, π), Theorem 2.4.6 cannot be used to determine the pdf of

Y .

Two possible approaches:

Method 1: cdfs

For 0 < y < 1 we have

FY (y) = PY (Y ≤ y)
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= PX(sin X ≤ y)

= PX([0 ≤ X ≤ sin−1(y)] or [π − sin−1(y) ≤ X ≤ π])

= FX(sin−1(y)) + (1 − FX(π − sin−1(y)))

since [0 ≤ X ≤ sin−1(y)] and [π − sin−1(y) ≤ X ≤ π] are disjoint sets. Then,

fY (y) = F ′
Y (y)

= fX(sin−1(y))
1

√

1 − y2
+ (−1)fX(π − sin−1(y))

−1
√

1 − y2

=
1

√

1 − y2

(

fX(sin−1(y)) + fX(π − sin−1(y))
)

=
1

√

1 − y2

(

2(sin−1(y))

π2
+

2(π − sin−1(y))

π2

)

=
1

π2
√

1 − y2
2π

=
2

π
√

1 − y2
· I(0,1)(y)

Method 2: Use of Theorem 2.4.7
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Theorem 2.4.9:

Let X be a rv with a continuous cdf FX(x) and let Y = FX(X). Then, Y ∼ U(0, 1).

Proof:

Note:

This proof also holds if there exist multiple intervals with xi < xj and FX(xi) = FX(xj), i.e.,

if the support of X is split in more than just 2 disjoint intervals.
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3 Moments and Generating Functions

3.1 Expectation

(Based on Casella/Berger, Sections 2.2 & 2.3, and Outside Material)

Definition 3.1.1:

Let X be a real-valued rv with cdf FX and pdf fX if X is continuous (or pmf fX and support

X if X is discrete). The expected value (mean) of a measurable function g(·) of X is

E(g(X)) =







∫ ∞

−∞
g(x)fX(x)dx, if X is continuous

∑

x∈X
g(x)fX(x), if X is discrete

if E(| g(X) |) < ∞; otherwise E(g(X)) is undefined, i.e., it does not exist.

Example:

X ∼ Cauchy, fX(x) = 1
π(1+x2)

,−∞ < x < ∞:

Theorem 3.1.2:

If E(X) exists and a and b are finite constants, then E(aX + b) exists and equals aE(X) + b.

Proof:

Continuous case only:
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Theorem 3.1.3:

If X is bounded (i.e., there exists a M, 0 < M < ∞, such that P (| X |< M) = 1), then E(X)

exists.

Definition 3.1.4:

The kth moment of X, if it exists, is mk = E(Xk).

The kth absolute moment of X, if it exists, is βk = E(| X |k).

The kth central moment of X, if it exists, is µk = E((X − E(X))k).

Definition 3.1.5:

The variance of X, if it exists, is the second central moment of X, i.e.,

V ar(X) = E((X − E(X))2).

Theorem 3.1.6:

V ar(X) = E(X2) − (E(X))2.

Proof:

V ar(X) = E((X − E(X))2)

= E(X2 − 2XE(X) + (E(X))2)

= E(X2) − 2E(X)E(X) + (E(X))2

= E(X2) − (E(X))2
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Theorem 3.1.7:

If V ar(X) exists and a and b are finite constants, then V ar(aX + b) exists and equals

a2V ar(X).

Proof:

Existence & Numerical Result:

V ar(aX + b) = E
(
((aX + b) − E(aX + b))2

)
exists if E

(| ((aX + b) − E(aX + b))2 |) exists.

It holds that

Theorem 3.1.8:

If the tth absolute moment of a rv X exists for some t > 0, then all absolute moments of order

0 < s < t exist.

Proof:

Continuous case only:
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Theorem 3.1.9:

If the tth absolute moment of a rv X exists for some t > 0, then

lim
n→∞

ntP (| X |> n) = 0.

Proof:

Continuous case only:

Note:

The inverse is not necessarily true, i.e., if lim
n→∞

ntP (| X |> n) = 0, then the tth moment of a

rv X does not necessarily exist. We can only approach t up to some δ > 0 as the following

Theorem 3.1.10 indicates.

Theorem 3.1.10:

Let X be a rv with a distribution such that lim
n→∞

ntP (| X |> n) = 0 for some t > 0. Then,

E(| X |s) < ∞ ∀ 0 < s < t.

Note:

To prove this Theorem, we need Lemma 3.1.11 and Corollary 3.1.12.

Lemma 3.1.11:

Let X be a non–negative rv with cdf F . Then,

E(X) =

∫ ∞

0
(1 − FX(x))dx

(if either side exists).

Proof:

Continuous case only:

To prove that the left side implies that the right side is finite and both sides are identical, we

assume that E(X) exists. It is
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Corollary 3.1.12:

E(| X |s) = s

∫ ∞

0
ys−1P (| X |> y)dy

Proof:

Proof (of Theorem 3.1.10):
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Theorem 3.1.13:

Let X be a rv such that

lim
k→∞

P (| X |> αk)

P (| X |> k)
= 0 ∀α > 1.

Then, all moments of X exist.

Proof:

• For ǫ > 0, we select some k0 such that

P (| X |> αk)

P (| X |> k)
< ǫ ∀k ≥ k0.

• Select k1 such that P (| X |> k) < ǫ ∀k ≥ k1.

• Select N = max(k0, k1).

• If we have some fixed positive integer r:

P (| X |> αrk)

P (| X |> k)
=

P (| X |> αk)

P (| X |> k)
· P (| X |> α2k)

P (| X |> αk)
· P (| X |> α3k)

P (| X |> α2k)
· . . . · P (| X |> αrk)

P (| X |> αr−1k)

=
P (| X |> αk)

P (| X |> k)
· P (| X |> α · (αk))

P (| X |> 1 · (αk))
· P (| X |> α · (α2k))

P (| X |> 1 · (α2k))
· . . . · P (| X |> α · (αr−1k))

P (| X |> 1 · (αr−1k))

• Note: Each of these r terms on the right side is < ǫ by our original statement of selecting

some k0 such that P (|X|>αk)
P (|X|>k) < ǫ ∀k ≥ k0 and since α > 1 and therefore αnk ≥ k0.

• Now we get for our entire expression that P (|X|>αrk)
P (|X|>k) ≤ ǫr for k ≥ N (since in this case also

k ≥ k0) and α > 1.

• Overall, we have P (| X |> αrk) ≤ ǫrP (| X |> k) ≤ ǫr+1 for k ≥ N (since in this case also

k ≥ k1).

• For a fixed positive integer n:

E(| X |n)
Cor.3.1.12

= n·
∞∫

0

xn−1P(| X |> x)dx = n

N∫

0

xn−1P(| X |> x)dx + n

∞∫

N

xn−1P(| X |> x)dx

• We know that:

n

N∫

0

xn−1P (| X |> x)dx ≤
N∫

0

nxn−1dx = xn |N0 = Nn < ∞

but is

n

∞∫

N

xn−1P (| X |> x)dx < ∞ ?

• To check the second part, we use:

∞∫

N

xn−1P (| X |> x)dx =
∞∑

r=1

αrN∫

αr−1N

xn−1P (| X |> x)dx
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• We know that:
αrN∫

αr−1N

xn−1P (| X |> x)dx ≤ ǫr

αrN∫

αr−1N

xn−1dx

This step is possible since ǫr ≥ P (| X |≥ αr−1N) ≥ P (| X |> x) ≥ P (| X |≥ αrN)

∀x ∈ (αr−1N,αrN) and N = max(k0, k1).

• Since (αr−1N)n−1 ≤ xn−1 ≤ (αrN)n−1 ∀x ∈ (αr−1N,αrN), we get:

ǫr

αrN∫

αr−1N

xn−1dx ≤ ǫr(αrN)n−1

αrN∫

αr−1N

1dx ≤ ǫr(αrN)n−1(αrN) = ǫr(αrN)n

• Now we go back to our original inequality:

∞∫

N

xn−1P (| X |> x)dx ≤
∞∑

r=1

ǫr

αrN∫

αr−1N

xn−1dx ≤
∞∑

r=1

ǫr(αrN)n = Nn
∞∑

r=1

(ǫ · αn)r

=
Nnǫαn

1 − ǫαn
if ǫαn < 1 or, equivalently, if ǫ <

1

αn

• Since
Nnǫαn

1 − ǫαn
is finite, all moments E(| X |n) exist.
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3.2 Moment Generating Functions

(Based on Casella/Berger, Sections 2.3 & 2.4)

Definition 3.2.1:

Let X be a rv with cdf FX . The moment generating function (mgf) of X is defined as

MX(t) = E(etX )

provided that this expectation exists for t in an (open) interval around 0, i.e., for −h < t < h

for some h > 0.

Theorem 3.2.2:

If a rv X has a mgf MX(t) that exists for −h < t < h for some h > 0, then

E(Xn) = M
(n)
X (0) =

dn

dtn
MX(t) |t=0 .

Proof:

We assume that we can differentiate under the integral sign. If, and when, this really is true

will be discussed later in this section.

48



Note:

We use the notation ∂
∂tf(x, t) for the partial derivative of f with respect to t and the notation

d
dtf(t) for the (ordinary) derivative of f with respect to t.

Example 3.2.3:

X ∼ U(a, b); fX(x) = 1
b−a · I[a,b](x).

Then,
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Note:

In the previous example, we made use of L’Hospital’s rule. This rule gives conditions under

which we can resolve indefinite expressions of the type “±0
±0” and “±∞

±∞”.

(i) Let f and g be functions that are differentiable in an open interval around x0, say

in (x0 − δ, x0 + δ), but not necessarily differentiable in x0. Let f(x0) = g(x0) = 0

and g′(x) 6= 0 ∀x ∈ (x0 − δ, x0 + δ) − {x0}. Then, lim
x→x0

f ′(x)

g′(x)
= A implies that also

lim
x→x0

f(x)

g(x)
= A. The same holds for the cases lim

x→x0
f(x) = lim

x→x0
g(x) = ∞ and x → x+

0

or x → x−
0 .

(ii) Let f and g be functions that are differentiable for x > a (a > 0). Let lim
x→∞

f(x) =

lim
x→∞

g(x) = 0 and lim
x→∞

g′(x) 6= 0. Then, lim
x→∞

f ′(x)

g′(x)
= A implies that also lim

x→∞

f(x)

g(x)
=

A.

(iii) We can iterate this process as long as the required conditions are met and derivatives

exist, e.g., if the first derivatives still result in an indefinite expression, we can look at

the second derivatives, then at the third derivatives, and so on.

(iv) It is recommended to keep expressions as simple as possible. If we have identical factors

in the numerator and denominator, we can exclude them from both and continue with

the simpler functions.

(v) Indefinite expressions of the form “0 ·∞” can be handled by rearranging them to “ 0
1/∞”

and lim
x→−∞

f(x)

g(x)
can be handled by use of the rules for lim

x→∞

f(−x)

g(−x)
.

Note:

The following Theorems provide us with rules that tell us when we can differentiate under

the integral sign. Theorem 3.2.4 relates to finite integral bounds a(θ) and b(θ) and Theorems

3.2.5 and 3.2.6 to infinite bounds.

Theorem 3.2.4: Leibnitz’s Rule

If f(x, θ), a(θ), and b(θ) are differentiable with respect to θ (for all x) and −∞ < a(θ) <

b(θ) < ∞, then

d

dθ

∫ b(θ)

a(θ)
f(x, θ)dx = f(b(θ), θ)

d

dθ
b(θ) − f(a(θ), θ)

d

dθ
a(θ) +

∫ b(θ)

a(θ)

∂

∂θ
f(x, θ)dx.

The first 2 terms are vanishing if a(θ) and b(θ) are constant in θ.
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Proof:

Uses the Fundamental Theorem of Calculus and the chain rule.

Theorem 3.2.5: Lebesque’s Dominated Convergence Theorem

Let g be an integrable function such that

∫ ∞

−∞
g(x)dx < ∞. If | fn |≤ g almost everywhere

(i.e., except for a set of Borel–measure 0) and if fn → f almost everywhere, then fn and f

are integrable and ∫

fn(x)dx →
∫

f(x)dx.

Note:

If f is differentiable with respect to θ, then

∂

∂θ
f(x, θ) = lim

δ→0

f(x, θ + δ) − f(x, θ)

δ

and ∫ ∞

−∞

∂

∂θ
f(x, θ)dx =

∫ ∞

−∞
lim
δ→0

f(x, θ + δ) − f(x, θ)

δ
dx

while
d

dθ

∫ ∞

−∞
f(x, θ)dx = lim

δ→0

∫ ∞

−∞

f(x, θ + δ) − f(x, θ)

δ
dx

Theorem 3.2.6:

Let fn(x, θ0) = f(x,θ0+δn)−f(x,θ0)
δn

for some θ0. Suppose there exists an integrable function g(x)

such that

∫ ∞

−∞
g(x)dx < ∞ and | fn(x, θ) |≤ g(x) ∀x, then

[
d

dθ

∫ ∞

−∞
f(x, θ)dx

]

θ=θ0

=

∫ ∞

−∞

[
∂

∂θ
f(x, θ) |θ=θ0

]

dx.

Usually, if f is differentiable for all θ, we write

d

dθ

∫ ∞

−∞
f(x, θ)dx =

∫ ∞

−∞

∂

∂θ
f(x, θ)dx.

Corollary 3.2.7:

Let f(x, θ) be differentiable for all θ. Suppose there exists an integrable function g(x, θ) such

that

∫ ∞

−∞
g(x, θ)dx < ∞ and

∣
∣
∣

∂
∂θf(x, θ) |θ=θ0

∣
∣
∣ ≤ g(x, θ) ∀x ∀θ0 in some ǫ–neighborhood of θ,

then
d

dθ

∫ ∞

−∞
f(x, θ)dx =

∫ ∞

−∞

∂

∂θ
f(x, θ)dx.
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More on Moment Generating Functions

Consider ∣
∣
∣
∣

∂

∂t
etxfX(x) |t=t′

∣
∣
∣
∣ =| x | et′xfX(x) for | t′ − t |≤ δ0.

Choose t, δ0 small enough such that t + δ0 ∈ (−h, h) and t − δ0 ∈ (−h, h). Then,

∣
∣
∣
∣

∂

∂t
etxfX(x) |t=t′

∣
∣
∣
∣ ≤ g(x, t)

where

g(x, t) =

{

| x | e(t+δ0)xfX(x), x ≥ 0

| x | e(t−δ0)xfX(x), x < 0

To verify
∫

g(x, t)dx < ∞, we need to know fX(x).

Suppose mgf MX(t) exists for | t |≤ h for some h > 1. Then | t+δ0+1 |< h and | t−δ0−1 |< h.

Since | x |≤ e|x| ∀x, we get

g(x, t) ≤
{

e(t+δ0+1)xfX(x), x ≥ 0

e(t−δ0−1)xfX(x), x < 0

Then,

∫ ∞

0
g(x, t)dx ≤ MX(t + δ0 + 1) < ∞ and

∫ 0

−∞
g(x, t)dx ≤ MX(t − δ0 − 1) < ∞ and,

therefore,

∫ ∞

−∞
g(x)dx < ∞.

Together with Corollary 3.2.7, this establishes that we can differentiate under the integral in

the Proof of Theorem 3.2.2.

If h ≤ 1, we may need to check more carefully to see if the condition holds.

Note:

If MX(t) exists for t ∈ (−h, h), then we have an infinite collection of moments.

Does a collection of integer moments {mk : k = 1, 2, 3, . . .} completely characterize the distri-

bution, i.e., cdf, of X? — Unfortunately not, as Example 3.2.8 shows.

Example 3.2.8:

Let X1 and X2 be rv’s with pdfs

fX1(x) =
1√
2π

1

x
exp(−1

2
(log x)2) · I(0,∞)(x)

and

fX2(x) = fX1(x) · (1 + sin(2π log x)) · I(0,∞)(x)
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It is E(Xr
1 ) = E(Xr

2 ) = er2/2 for r = 0, 1, 2, . . . as you have to show in the Homework.

Two different pdfs/cdfs have the same moment sequence! What went wrong? In this example,

MX1(t) does not exist as shown in the Homework!

Theorem 3.2.9:

Let X and Y be 2 rv’s with cdf’s FX and FY for which all moments exist.

(i) If FX and FY have bounded support, then FX(u) = FY (u) ∀u iff E(Xr) = E(Y r) for

r = 0, 1, 2, . . ..

(ii) If both mgf’s exist, i.e., MX(t) = MY (t) for t in some neighborhood of 0, then FX(u) =

FY (u) ∀u.

Note:

The existence of moments is not equivalent to the existence of a mgf as seen in Example 3.2.8

above and some of the Homework assignments.

Theorem 3.2.10:

Suppose rv’s {Xi}∞i=1 have mgf’s MXi
(t) and that lim

i→∞
MXi

(t) = MX(t) ∀t ∈ (−h, h) for

some h > 0 and that MX(t) itself is a mgf. Then, there exists a cdf FX whose moments are

determined by MX(t) and for all continuity points x of FX(x) it holds that lim
i→∞

FXi
(x) =

FX(x), i.e., the convergence of mgf’s implies the convergence of cdf’s.

Proof:

Uniqueness of Laplace transformations, etc.

Theorem 3.2.11:

For constants a and b, the mgf of Y = aX + b is

MY (t) = ebtMX(at),

given that MX(t) exists.

Proof:
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3.3 Complex–Valued Random Variables and Characteristic Functions

(Based on Casella/Berger, Section 2.6, and Outside Material)

Recall the following facts regarding complexd numbers:

i0 = +1; i =
√
−1; i2 = −1; i3 = −i; i4 = +1; etc.

in the planar Gauss’ian number plane it holds that i = (0, 1)

z = a + ib = r(cos φ + i sin φ)

r =| z |=
√

a2 + b2

tan φ = b
a

Euler’s Relation: z = r(cos φ + i sin φ) = reiφ

Mathematical Operations on Complex Numbers:

z1 ± z2 = (a1 ± a2) + i(b1 ± b2)

z1 · z2 = r1r2e
i(φ1+φ2) = r1r2(cos(φ1 + φ2) + i sin(φ1 + φ2))

z1
z2

= r1
r2

ei(φ1−φ2) = r1
r2

(cos(φ1 − φ2) + i sin(φ1 − φ2))

Moivre’s Theorem: zn = (r(cos φ + i sin φ))n = rn(cos(nφ) + i sin(nφ))

n
√

z = n
√

a + ib = n
√

r
(

cos(φ+k·2π
n ) + i sin(φ+k·2π

n )
)

for k = 0, 1, . . . , (n− 1) and the main value

is obtained for k = 0

ln z = ln(a + ib) = ln(| z |) + iφ± ik · 2π where φ = arctan b
a , k = 0,±1,±2, . . ., and the main

value is obtained for k = 0

Note:

Similar to real numbers, where we define
√

4 = 2 while it holds that 22 = 4 and (−2)2 = 4,

the nth root and also the logarithm of complex numbers have one main value. However, if we

read nth root and logarithm as mappings where the inverse mappings (power and exponential

function) yield the original values again, there exist additional solutions that produce the

original values. For example, the main value of
√
−1 is i. However, it holds that i2 = −1 and

(−i)2 = (−1)2i2 = i2 = −1. So, all solutions to
√
−1 are {i,−i}.
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Conjugate Complex Numbers:

For z = a + ib, we define the conjugate complex number z = a − ib. It holds:

z = z

z = z iff z ∈ IR

z1 ± z2 = z1 ± z2

z1 · z2 = z1 · z2
(

z1
z2

)

= z1
z2

z · z = a2 + b2

Re(z) = a = 1
2 (z + z)

Im(z) = b = 1
2i (z − z)

| z |=
√

a2 + b2 =
√

z · z

Definition 3.3.1:

Let (Ω, L, P ) be a probability space and X and Y real–valued rv’s, i.e., X,Y : (Ω, L) → (IR,B)

(i) Z = X + iY : (Ω, L) → (CI,BCI) is called a complex–valued random variable (CI-rv).

(ii) If E(X) and E(Y ) exist, then E(Z) is defined as E(Z) = E(X) + iE(Y ) ∈ CI.

Note:

E(Z) exists iff E(| X |) and E(| Y |) exist. It also holds that if E(Z) exists, then | E(Z) |≤
E(| Z |) (see Homework).

Definition 3.3.2:

Let X be a real–valued rv on (Ω, L, P ). Then, ΦX(t) : IR → CI with ΦX(t) = E(eitX ) is called

the characteristic function of X.

Note:

(i) ΦX(t) =

∫ ∞

−∞
eitxfX(x)dx =

∫ ∞

−∞
cos(tx)fX(x)dx+ i

∫ ∞

−∞
sin(tx)fX(x)dx if X is contin-

uous.

(ii) ΦX(t) =
∑

x∈X
eitxP (X = x) =

∑

x∈X
cos(tx)P (X = x) + i

∑

x∈X
sin(tx)P (X = x)(x) if X is

discrete and X is the support of X.
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(iii) ΦX(t) exists for all real–valued rv’s X since | eitx |= 1.

Theorem 3.3.3:

Let ΦX be the characteristic function of a real–valued rv X. Then it holds:

(i) ΦX(0) = 1.

(ii) | ΦX(t) |≤ 1 ∀t ∈ IR.

(iii) ΦX is uniformly continuous, i.e., ∀ǫ > 0 ∃δ > 0 ∀t1, t2 ∈ IR :| t1 − t2 |< δ ⇒| Φ(t1) −
Φ(t2) |< ǫ.

(iv) ΦX is a positive definite function, i.e., ∀n ∈ IN ∀α1, . . . , αn ∈ CI ∀t1, . . . , tn ∈ IR :

n∑

l=1

n∑

j=1

αlαjΦX(tl − tj) ≥ 0.

(v) ΦX(t) = ΦX(−t).

(vi) If X is symmetric around 0, i.e., if X has a pdf that is symmetric around 0, then

ΦX(t) ∈ IR ∀t ∈ IR.

(vii) ΦaX+b(t) = eitbΦX(at).

Proof:

See Homework for parts (i), (ii), (iv), (v), (vi), and (vii).

Part (iii):

Known conditions:
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Theorem 3.3.4: Bochner’s Theorem

Let Φ : IR → CI be any function with properties (i), (ii), (iii), and (iv) from Theorem 3.3.3.

Then there exists a real–valued rv X with ΦX = Φ.

Theorem 3.3.5:

Let X be a real–valued rv and E(Xk) exists for an integer k. Then, ΦX is k times differen-

tiable and Φ
(k)
X (t) = ikE(XkeitX). In particular for t = 0, it is Φ

(k)
X (0) = ikmk.

Theorem 3.3.6:

Let X be a real–valued rv with characteristic function ΦX and let ΦX be k times differentiable,

where k is an even integer. Then the kth moment of X, mk, exists and it is Φ
(k)
X (0) = ikmk.

Theorem 3.3.7: Levy’s Theorem

Let X be a real–valued rv with cdf FX and characteristic function ΦX . Let a, b ∈ IR, a < b.

If P (X = a) = P (X = b) = 0, i.e., FX is continuous in a and b, then

F (b) − F (a) =
1

2π

∫ ∞

−∞

e−ita − e−itb

it
ΦX(t)dt.

Theorem 3.3.8:

Let X and Y be a real–valued rv with characteristic functions ΦX and ΦY . If ΦX = ΦY , then

X and Y are identically distributed.

Theorem 3.3.9:

Let X be a real–valued rv with characteristic function ΦX such that

∫ ∞

−∞
| ΦX(t) | dt < ∞.

Then X has pdf

fX(x) =
1

2π

∫ ∞

−∞
e−itxΦX(t)dt.

Theorem 3.3.10:

Let X be a real–valued rv with mgf MX(t), i.e., the mgf exists. Then ΦX(t) = MX(it).

Theorem 3.3.11:

Suppose real–valued rv’s {Xi}∞i=1 have cdf’s {FXi
}∞i=1 and characteristic functions {ΦXi

(t)}∞i=1.
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If lim
i→∞

ΦXi
(t) = ΦX(t) ∀t ∈ (−h, h) for some h > 0 and ΦX(t) is itself a characteristic func-

tion (of a rv X with cdf FX), then lim
i→∞

FXi
(x) = FX(x) for all continuity points x of FX(x),

i.e., the convergence of characteristic functions implies the convergence of cdf’s.

Theorem 3.3.12:

Characteristic functions for some well–known distributions:

Distribution ΦX(t)

(i) X ∼ Dirac(c) eitc

(ii) X ∼ Bin(1, p) 1 + p(eit − 1)

(iii) X ∼ Poisson(c) exp(c(eit − 1))

(iv) X ∼ U(a, b) eitb−eita

(b−a)it

(v) X ∼ N(0, 1) exp(−t2/2)

(vi) X ∼ N(µ, σ2) eitµ exp(−σ2t2/2)

(vii) X ∼ Γ(p, q) (1 − it
q )−p

(viii) X ∼ Exp(c) (1 − it
c )−1

(ix) X ∼ χ2
n (1 − 2it)−n/2

Proof:
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Example 3.3.13:

Since we know that m1 = E(X) and m2 = E(X2) exist for X ∼ Bin(1, p), we can determine

these moments according to Theorem 3.3.5 using the characteristic function.

It is

Note:

The restriction

∫ ∞

−∞
| ΦX(t) | dt < ∞ in Theorem 3.3.9 works in such a way that we don’t

end up with a (non–existing) pdf if X is a discrete rv. For example,

• X ∼ Dirac(c):

∫ ∞

−∞
| ΦX(t) | dt =

∫ ∞

−∞
| eitc | dt

=

∫ ∞

−∞
1dt

= t |∞−∞

which is undefined.

• Also for X ∼ Bin(1, p):

∫ ∞

−∞
| ΦX(t) | dt =

∫ ∞

−∞
| 1 + p(eit − 1) | dt

=

∫ ∞

−∞
| peit − (p − 1) | dt

≥
∫ ∞

−∞
| | peit | − | (p − 1) | | dt

≥
∫ ∞

−∞
| peit | dt −

∫ ∞

−∞
| (p − 1) | dt

= p

∫ ∞

−∞
1dt − (1 − p)

∫ ∞

−∞
1 dt

61



= (2p − 1)

∫ ∞

−∞
1 dt

= (2p − 1)t |∞−∞

which is undefined for p 6= 1/2.

If p = 1/2, we have

∫ ∞

−∞
| peit − (p − 1) | dt = 1/2

∫ ∞

−∞
| eit + 1 | dt

= 1/2

∫ ∞

−∞
| cos t + i sin t + 1 | dt

= 1/2

∫ ∞

−∞

√

(cos t + 1)2 + (sin t)2 dt

= 1/2

∫ ∞

−∞

√

cos2 t + 2cos t + 1 + sin2 t dt

= 1/2

∫ ∞

−∞

√
2 + 2 cos t dt

which also does not exist.

• Otherwise, X ∼ N(0, 1):

∫ ∞

−∞
| ΦX(t) | dt =

∫ ∞

−∞
exp(−t2/2)dt

=
√

2π

∫ ∞

−∞

1√
2π

exp(−t2/2)dt

=
√

2π

< ∞
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3.4 Probability Generating Functions

(Based on Casella/Berger, Section 2.6, and Outside Material)

Definition 3.4.1:

Let X be a discrete rv which only takes non–negative integer values, i.e., pk = P (X = k), and
∞∑

k=0

pk = 1. Then, the probability generating function (pgf) of X is defined as

G(s) =
∞∑

k=0

pks
k.

Theorem 3.4.2:

G(s) converges for | s |≤ 1.

Proof:

Theorem 3.4.3:

Let X be a discrete rv which only takes non–negative integer values and has pgf G(s). Then

it holds:

P (X = k) =
1

k!

dk

dsk
G(s) |s=0

Theorem 3.4.4:

Let X be a discrete rv which only takes non–negative integer values and has pgf G(s). If

E(X) exists, then it holds:

E(X) =
d

ds
G(s) |s=1
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Definition 3.4.5:

The kth factorial moment of X is defined as

E[X(X − 1)(X − 2) · . . . · (X − k + 1)]

if this expectation exists.

Theorem 3.4.6:

Let X be a discrete rv which only takes non–negative integer values and has pgf G(s). If

E[X(X − 1)(X − 2) · . . . · (X − k + 1)] exists, then it holds:

E[X(X − 1)(X − 2) · . . . · (X − k + 1)] =
dk

dsk
G(s) |s=1

Proof:

Homework

Note:

Similar to the Cauchy distribution for the continuous case, there exist discrete distributions

where the mean (or higher moments) do not exist. See Homework.

Example 3.4.7:

Let X ∼ Poisson(c) with

P (X = k) = pk = e−c ck

k!
, k = 0, 1, 2, . . . .

It is
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3.5 Moment Inequalities

(Based on Casella/Berger, Sections 3.6, 3.8, and Outside Material)

Theorem 3.5.1:

Let h(X) be a non–negative Borel–measurable function of a rv X. If E(h(X)) exists, then it

holds:

P (h(X) ≥ ǫ) ≤ E(h(X))

ǫ
∀ǫ > 0

Proof:

Continuous case only:

Corollary 3.5.2: Markov’s Inequality

Let h(X) =| X |r and ǫ = kr where r > 0 and k > 0. If E(| X |r) exists, then it holds:

P (| X |≥ k) ≤ E(| X |r)
kr

Proof:

Corollary 3.5.3: Chebychev’s Inequality

Let h(X) = (X − µ)2 and ǫ = k2σ2 where E(X) = µ, V ar(X) = σ2 < ∞, and k > 0. Then it

holds:

P (| X − µ |≥ kσ) ≤ 1

k2

Proof:
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Note:

For k = 2, it follows from Corollary 3.5.3 that

P (| X − µ |< 2σ) ≥ 1 − 1

22
= 0.75,

no matter what the distribution of X is. Unfortunately, this is not very precise for many

distributions, e.g., the Normal distribution, where it holds that P (| X −µ |< 2σ) ≈ 0.95.

Theorem 3.5.4: Lyapunov Inequality

Let 0 < βn = E(| X |n) < ∞. For arbitrary k such that 2 ≤ k ≤ n, it holds that

(βk−1)
1

k−1 ≤ (βk)
1
k ,

i.e., (E(| X |k−1))
1

k−1 ≤ (E(| X |k)) 1
k .

Proof:

Continuous case only:

66



Note:

• It follows from Theorem 3.5.4 that

(E(| X |))1 ≤ (E(| X |2))1/2 ≤ (E(| X |3))1/3 ≤ . . . ≤ (E(| X |n))1/n.

• For X ∼ Dirac(c), c > 0, with P (X = c) = 1, it follows immediately from Theorem

3.3.12 (i) and Theorem 3.3.5 that mk = E(Xk) = ck. So,

E(| X |k) = E(Xk) = ck

and

(E(| X |k))1/k = (E(Xk))1/k = (ck)1/k = c.

Therefore, equality holds in Theorem 3.5.4.
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4 Random Vectors

4.1 Joint, Marginal, and Conditional Distributions

(Based on Casella/Berger, Sections 4.1 & 4.2)

Definition 4.1.1:

The vector X ′ = (X1, . . . ,Xn) on (Ω, L, P ) → IRn defined by X(ω) = (X1(ω), . . . ,Xn(ω))′, ω ∈
Ω, is an n–dimensional random vector (n–rv) if X−1(I) = {ω : X1(ω) ≤ a1, . . . ,Xn(ω) ≤
an} ∈ L for all n–dimensional intervals I = {(x1, . . . , xn) : −∞ < xi ≤ ai, ai ∈ IR ∀i =

1, . . . , n}.

Note:

It follows that if X1, . . . ,Xn are any n rv’s on (Ω, L, P ), then X = (X1, . . . ,Xn)′ is an n–rv

on (Ω, L, P ) since for any I, it holds:

X−1(I) = {ω : (X1(ω), . . . ,Xn(ω)) ∈ I}

= {ω : X1(ω) ≤ a1, . . . ,Xn(ω) ≤ an}

=
n⋂

k=1

{ω : Xk(ω) ≤ ak}
︸ ︷︷ ︸

∈L
︸ ︷︷ ︸

∈L

Definition 4.1.2:

For an n–rv X , a function F defined by

F (x) = P (X ≤ x) = P (X1 ≤ x1, . . . ,Xn ≤ xn) ∀x ∈ IRn

is the joint cumulative distribution function (joint cdf) of X .

Note:

(i) F is non–decreasing and right–continuous in each of its arguments xi.

(ii) lim
x→∞

F (x) = lim
x1→∞,...xn→∞

F (x) = 1 and lim
xk→−∞

F (x) = 0 ∀x1, . . . , xk−1, xk+1, . . . , xn ∈
IR.

However, conditions (i) and (ii) together are not sufficient for F to be a joint cdf. Instead we

need the conditions from the next Theorem.
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Theorem 4.1.3:

A function F (x) = F (x1, . . . , xn) is the joint cdf of some n–rv X iff

(i) F is non–decreasing and right–continuous with respect to each xi,

(ii) F (−∞, x2, . . . , xn) = F (x1,−∞, x3, . . . , xn) = . . . = F (x1, . . . , xn−1,−∞) = 0 and

F (∞, . . . ,∞) = 1, and

(iii) ∀x ∈ IRn ∀ǫi > 0, i = 1, . . . n, the following inequality holds:

F (x + ǫ) −
n∑

i=1

F (x1 + ǫ1, . . . , xi−1 + ǫi−1, xi, xi+1 + ǫi+1, . . . , xn + ǫn)

+
∑

1≤i<j≤n

F (x1 + ǫ1, . . . , xi−1 + ǫi−1, xi, xi+1 + ǫi+1, . . . ,

xj−1 + ǫj−1, xj , xj+1 + ǫj+1, . . . , xn + ǫn)

∓ . . .

+ (−1)nF (x)

≥ 0

Note:

We won’t prove this Theorem but just see why we need condition (iii) for n = 2:

P (x1 < X ≤ x2, y1 < Y ≤ y2) =

P (X ≤ x2, Y ≤ y2)−P (X ≤ x1, Y ≤ y2)−P (X ≤ x2, Y ≤ y1)+P (X ≤ x1, Y ≤ y1) ≥ 0

Note:

We will restrict ourselves to n = 2 for most of the next Definitions and Theorems but those

can be easily generalized to n > 2. The term bivariate rv is often used to refer to a 2–rv

and multivariate rv is used to refer to an n–rv, n ≥ 2.

Definition 4.1.4:

A 2–rv (X,Y ) is discrete if there exists a countable collection X of pairs (xi, yi) that has

probability 1. Let pij = P (X = xi, Y = yj) > 0 ∀(xi, yj) ∈ X. Then,
∑

i,j

pij = 1 and {pij} is

the joint probability mass function (joint pmf) of (X,Y ).
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Definition 4.1.5:

Let (X,Y ) be a discrete 2–rv with joint pmf {pij}. Define

pi· =
∞∑

j=1

pij =
∞∑

j=1

P (X = xi, Y = yj) = P (X = xi)

and

p·j =
∞∑

i=1

pij =
∞∑

i=1

P (X = xi, Y = yj) = P (Y = yj).

Then {pi·} is called the marginal probability mass function (marginal pmf) of X and

{p·j} is called the marginal probability mass function of Y .

Definition 4.1.6:

A 2–rv (X,Y ) is continuous if there exists a non–negative function f such that

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v) dv du ∀(x, y) ∈ IR2

where F is the joint cdf of (X,Y ). We call f the joint probability density function (joint

pdf) of (X,Y ).

Note:

If F is continuous at (x, y), then

∂2F (x, y)

∂x ∂y
= f(x, y).

Definition 4.1.7:

Let (X,Y ) be a continuous 2–rv with joint pdf f . Then fX(x) =

∫ ∞

−∞
f(x, y)dy is called the

marginal probability density function (marginal pdf) of X and fY (y) =

∫ ∞

−∞
f(x, y)dx

is called the marginal probability density function of Y .

Note:

(i)

∫ ∞

−∞
fX(x)dx =

∫ ∞

−∞

(∫ ∞

−∞
f(x, y)dy

)

dx = F (∞,∞) = 1 =

∫ ∞

−∞

(∫ ∞

−∞
f(x, y)dx

)

dy =

∫ ∞

−∞
fY (y)dy

and fX(x) ≥ 0 ∀x ∈ IR and fY (y) ≥ 0 ∀y ∈ IR.
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(ii) Given a 2–rv (X,Y ) with joint cdf F (x, y), how do we generate a marginal cdf

FX(x) = P (X ≤ x) ? — The answer is P (X ≤ x) = P (X ≤ x,−∞ < Y < ∞) =

F (x,∞).

Definition 4.1.8:

If FX(x1, . . . , xn) = FX(x) is the joint cdf of an n–rv X = (X1, . . . ,Xn), then the marginal

cumulative distribution function (marginal cdf) of (Xi1 , . . . ,Xik), 1 ≤ k ≤ n − 1, 1 ≤
i1 < i2 < . . . < ik ≤ n, is given by

lim
xi→∞,i6=i1,...,ik

FX(x) = FX(∞, . . . ,∞, xi1 ,∞, . . . ,∞, xi2 ,∞, . . . ,∞, xik ,∞, . . . ,∞).

Note:

In Definition 1.4.1, we defined conditional probability distributions in some probability space

(Ω, L, P ). This definition extends to conditional distributions of 2–rv’s (X,Y ).

Definition 4.1.9:

Let (X,Y ) be a discrete 2–rv. If P (Y = yj) = p·j > 0, then the conditional probability

mass function (conditional pmf) of X given Y = yj (for fixed j) is defined as

pi|j = P (X = xi | Y = yj) =
P (X = xi, Y = yj)

P (Y = yj)
=

pij

p·j
.

Note:

For a continuous 2–rv (X,Y ) with pdf f , P (X ≤ x | Y = y) is not defined. Let ǫ > 0 and

suppose that P (y − ǫ < Y ≤ y + ǫ) > 0. For every x and every interval (y − ǫ, y + ǫ], consider

the conditional probability of X ≤ x given Y ∈ (y − ǫ, y + ǫ]. We have

P (X ≤ x | y − ǫ < Y ≤ y + ǫ) =
P (X ≤ x, y − ǫ < Y ≤ y + ǫ)

P (y − ǫ < Y ≤ y + ǫ)

which is well–defined if P (y − ǫ < Y ≤ y + ǫ) > 0 holds.

So, when does

lim
ǫ→0+

P (X ≤ x | Y ∈ (y − ǫ, y + ǫ])

exist? See the next definition.
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Definition 4.1.10:

The conditional cumulative distribution function (conditional cdf) of a rv X given

that Y = y is defined to be

FX|Y (x | y) = lim
ǫ→0+

P (X ≤ x | Y ∈ (y − ǫ, y + ǫ])

provided that this limit exists. If it does exist, the conditional probability density func-

tion (conditional pdf) of X given that Y = y is any non–negative function fX|Y (x | y)

satisfying

FX|Y (x | y) =

∫ x

−∞
fX|Y (t | y)dt ∀x ∈ IR.

Note:

For fixed y, fX|Y (x | y) ≥ 0 and

∫ ∞

−∞
fX|Y (x | y)dx = 1. So it is really a pdf.

Theorem 4.1.11:

Let (X,Y ) be a continuous 2–rv with joint pdf fX,Y . It holds that at every point (x, y) where

f is continuous and the marginal pdf fY (y) > 0, we have

FX|Y (x | y) = lim
ǫ→0+

P (X ≤ x, Y ∈ (y − ǫ, y + ǫ])

P (Y ∈ (y − ǫ, y + ǫ])

= lim
ǫ→0+








1
2ǫ

∫ x

−∞

∫ y+ǫ

y−ǫ
fX,Y (u, v)dv du

1
2ǫ

∫ y+ǫ

y−ǫ
fY (v)dv








=

∫ x

−∞
fX,Y (u, y)du

fY (y)

=

∫ x

−∞

fX,Y (u, y)

fY (y)
du.

Thus, fX|Y (x | y) exists and equals
fX,Y (x,y)

fY (y) , provided that fY (y) > 0. Furthermore, since

∫ x

−∞
fX,Y (u, y)du = fY (y)FX|Y (x | y),

we get the following marginal cdf of X:

FX(x) =

∫ ∞

−∞

(∫ x

−∞
fX,Y (u, y)du

)

dy =

∫ ∞

−∞
fY (y)FX|Y (x | y)dy
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Example 4.1.12:

Consider

fX,Y (x, y) =

{

2, 0 < x < y < 1

0, otherwise

We calculate the marginal pdf’s fX(x) and fY (y) first:
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4.2 Independent Random Variables

(Based on Casella/Berger, Sections 4.2 & 4.6)

Example 4.2.1: (from Rohatgi, page 119, Example 1)

Let f1, f2, f3 be 3 pdf’s with cdf’s F1, F2, F3 and let | α |≤ 1. Define

fα(x1, x2, x3) = f1(x1)f2(x2)f3(x3) · (1 + α(2F1(x1) − 1)(2F2(x2) − 1)(2F3(x3) − 1)).

We can show

(i) fα is a pdf for all α ∈ [−1, 1].

(ii) {fα : −1 ≤ α ≤ 1} all have marginal pdf’s f1, f2, f3.

See book for proof and further discussion — but when do the marginal distributions uniquely

determine the joint distribution?

Definition 4.2.2:

Let FX,Y (x, y) be the joint cdf and FX(x) and FY (y) be the marginal cdf’s of a 2–rv (X,Y ).

X and Y are independent iff

FX,Y (x, y) = FX(x)FY (y) ∀(x, y) ∈ IR2.

Lemma 4.2.3:

If X and Y are independent, a, b, c, d ∈ IR, and a < b and c < d, then

P (a < X ≤ b, c < Y ≤ d) = P (a < X ≤ b)P (c < Y ≤ d).

Proof:

Definition 4.2.4:

A collection of rv’s X1, . . . ,Xn with joint cdf FX(x) and marginal cdf’s FXi
(xi) are mutually

(or completely) independent iff

FX(x) =
n∏

i=1

FXi
(xi) ∀x ∈ IRn.
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Note:

We often simply say that the rv’s X1, . . . ,Xn are independent when we really mean that

they are mutually independent.

Theorem 4.2.5: Factorization Theorem

(i) A necessary and sufficient condition for discrete rv’s X1, . . . ,Xn to be independent is

that

P (X = x) = P (X1 = x1, . . . ,Xn = xn) =
n∏

i=1

P (Xi = xi) ∀x ∈ X

where X ⊂ IRn is the countable support of X .

(ii) For an absolutely continuous n–rv X = (X1, . . . ,Xn), X1, . . . ,Xn are independent iff

fX(x) = fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi
(xi),

where fX is the joint pdf and fX1, . . . , fXn are the marginal pdfs of X.

Proof:

(i) Discrete case:
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Theorem 4.2.6:

X1, . . . ,Xn are independent iff P (Xi ∈ Ai, i = 1, . . . , n) =
n∏

i=1

P (Xi ∈ Ai) ∀ Borel sets Ai ∈ B

(i.e., rv’s are independent iff all events involving these rv’s are independent).

Proof:

Lemma 4.2.3 and definition of Borel sets.

Theorem 4.2.7:

Let X1, . . . ,Xn be independent rv’s and g1, . . . , gn be Borel–measurable functions. Then

g1(X1), g2(X2), . . . , gn(Xn) are independent.

Proof:

Theorem 4.2.8:

If X1, . . . ,Xn are independent, then also every subcollection Xi1 , . . . ,Xik , k = 2, . . . , n − 1,

1 ≤ i1 < i2 . . . < ik ≤ n, is independent.

Definition 4.2.9:

A set (or a sequence) of rv’s {Xn}∞n=1 is independent iff every finite subcollection is indepen-

dent.

Note:

Recall that X and Y are identically distributed iff FX(x) = FY (x) ∀x ∈ IR according to

Definition 2.2.5 and Theorem 2.2.6.

Definition 4.2.10:

We say that {Xn}∞n=1 is a set (or a sequence) of independent identically distributed (iid)

rv’s if {Xn}∞n=1 is independent and all Xn are identically distributed.
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Note:

Recall that X and Y being identically distributed does not say that X = Y with probability

1. If this happens, we say that X and Y are equivalent rv’s.

Note:

We can also extend the defintion of independence to 2 random vectors Xn×1 and Y n×1:

X and Y are independent iff FX,Y (x, y) = FX(x)FY (y) ∀x, y ∈ IRn.

This does not mean that the components Xi of X or the components Yi of Y are independent.

However, it does mean that each pair of components (Xi, Yi) are independent, any subcollec-

tions (Xi1 , . . . ,Xik) and (Yj1 , . . . , Yjl
) are independent, and any Borel–measurable functions

f(X) and g(Y ) are independent.

Corollary 4.2.11: (to Factorization Theorem 4.2.5)

If X and Y are independent rv’s, then

FX|Y (x | y) = FX(x) ∀x,

and

FY |X(y | x) = FY (y) ∀y.
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4.3 Functions of Random Vectors

(Based on Casella/Berger, Sections 4.3 & 4.6)

Theorem 4.3.1:

If X and Y are rv’s on (Ω, L, P ) → IR, then

(i) X ± Y is a rv.

(ii) XY is a rv.

(iii) If {ω : Y (ω) = 0} = Ø, then X
Y is a rv.

Theorem 4.3.2:

Let X1, . . . ,Xn be rv’s on (Ω, L, P ) → IR. Define

MAXn = max{X1, . . . ,Xn} = X(n)

by

MAXn(ω) = max{X1(ω), . . . ,Xn(ω)} ∀ω ∈ Ω

and

MINn = min{X1, . . . ,Xn} = X(1) = −max{−X1, . . . ,−Xn}

by

MINn(ω) = min{X1(ω), . . . ,Xn(ω)} ∀ω ∈ Ω.

Then,

(i) MINn and MAXn are rv’s.

(ii) If X1, . . . ,Xn are independent, then

FMAXn(z) = P (MAXn ≤ z) = P (Xi ≤ z ∀i = 1, . . . , n) = ...

and

FMINn(z) = P (MINn ≤ z) = 1 − P (Xi > z ∀i = 1, . . . , n) = ...

(iii) If {Xi}n
i=1 are iid rv’s with common cdf FX , then

FMAXn(z) = ...

and

FMINn(z) = ...
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If FX is absolutely continuous with pdf fX , then the pdfs of MAXn and MINn are

fMAXn(z) = ...

and

fMINn(z) = ...

for all continuity points of FX .

Note:

Using Theorem 4.3.2, it is easy to derive the joint cdf and pdf of MAXn and MINn for iid

rv’s {X1, . . . ,Xn}. For example, if the Xi’s are iid with cdf FX and pdf fX , then the joint

pdf of MAXn and MINn is

fMAXn,MINn(x, y) =

{

0, x ≤ y

n(n − 1) · (FX (x) − FX(y))n−2 · fX(x)fX(y), x > y

However, note that MAXn and MINn are not independent.

Note:

The previous transformations are special cases of the following Theorem:

Theorem 4.3.3:

If g : IRn → IRm is a Borel–measurable function (i.e., ∀B ∈ Bm : g−1(B) ∈ Bn) and if

X = (X1, . . . ,Xn) is an n–rv, then g(X) is an m–rv.

Proof:

If B ∈ Bm, then {ω : g(X(ω)) ∈ B} = {ω : X(ω) ∈ g−1(B)} ∈ Bn.

Question: How do we handle more general transformations of X ?

Discrete Case:

Let X = (X1, . . . ,Xn) be a discrete n–rv and X ⊂ IRn be the countable support of X , i.e.,

P (X ∈ X) = 1 and P (X = x) > 0 ∀x ∈ X.

Define ui = gi(x1, . . . , xn), i = 1, . . . , n to be 1–to–1-mappings of X onto B. Let u =

(u1, . . . , un)′. Then

P (U = u) = P (g1(X) = u1, . . . , gn(X) = un) = P (X1 = h1(u), . . . ,Xn = hn(u)) ∀u ∈ B
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where xi = hi(u), i = 1, . . . , n, is the inverse transformation (and P (U = u) = 0 ∀u 6∈ B).

The joint marginal pmf of any subcollection of ui’s is now obtained by summing over the other

remaining uj ’s.

Example 4.3.4:

Let X,Y be iid ∼ Bin(n, p), 0 < p < 1. Let U = X
Y +1 and V = Y + 1.

Continuous Case:

Let X = (X1, . . . ,Xn) be a continuous n–rv with joint cdf FX and joint pdf fX .

Let

U =







U1

...

Un







= g(X) =







g1(X)
...

gn(X)







,

i.e., Ui = gi(X), be a mapping from IRn into IRn.

If B ∈ Bn, then

P (U ∈ B) = P (X ∈ g−1(B)) =

∫
. . .
∫

g−1(B)
fX(x)d(x) =

∫
. . .
∫

g−1(B)
fX(x)

n∏

i=1

dxi

where g−1(B) = {x = (x1, . . . , xn) ∈ IRn : g(x) ∈ B}.

Suppose we define B as the half–infinite n–dimensional interval

Bu = {(ũ1, . . . , ũn) : −∞ < ũi < ui ∀i = 1, . . . , n}

for any u ∈ IRn. Then the joint cdf of U is

GU (u) = P (U ∈ Bu) = P (g1(X) ≤ u1, . . . , gn(X) ≤ un) =

∫
. . .
∫

g−1(Bu)
fX(x)d(x).
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If G happens to be absolutely continuous, the joint pdf of U will be given by fU (u) =
∂nG(u)

∂u1∂u2...∂un
at every continuity point of fU .

Under certain conditions, we can write fU in terms of the original pdf fX of X as stated in

the next Theorem:

Theorem 4.3.5: Multivariate Transformation

Let X = (X1, . . . ,Xn) be a continuous n–rv with joint pdf fX .

(i) Let

U =







U1

...

Un







= g(X) =







g1(X)
...

gn(X)







,

(i.e., Ui = gi(X)) be a 1–to–1–mapping from IRn into IRn, i.e., there exist inverses hi,

i = 1, . . . , n, such that xi = hi(u) = hi(u1, . . . , un), i = 1, . . . , n, over the range of the

transformation g.

(ii) Assume both g and h are continuous.

(iii) Assume partial derivatives ∂xi

∂uj
= ∂hi(u)

∂uj
, i, j = 1, . . . , n, exist and are continuous.

(iv) Assume that the Jacobian of the inverse transformation

J =

∣
∣
∣
∣

∂(x1, . . . , xn)

∂(u1, . . . , un)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

∂x1
∂u1

. . . ∂x1
∂un

...
...

∂xn

∂u1
. . . ∂xn

∂un

∣
∣
∣
∣
∣
∣
∣
∣

is different from 0 for all u in the range of g.

Then the n–rv U = g(X) has a joint absolutely continuous cdf with corresponding joint pdf

fU(u) =| J | fX(h1(u), . . . , hn(u)).

Proof:

Let u ∈ IRn and

Bu = {(ũ1, . . . , ũn) : −∞ < ũi < ui ∀i = 1, . . . , n}.

Then,

GU (u) =

∫
. . .
∫

g−1(Bu)
fX(x)d(x)

=

∫
. . .
∫

Bu
fX(h1(u), . . . , hn(u)) | J | d(u)
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The result follows from differentiation of GU .

For additional steps of the proof see Rohatgi (page 135 and Theorem 17 on page 10) or a book

on multivariate calculus.

Theorem 4.3.6:

Let X = (X1, . . . ,Xn) be a continuous n–rv with joint pdf fX .

(i) Let

U =







U1

...

Un







= g(X) =







g1(X)
...

gn(X)







,

(i.e., Ui = gi(X)) be a mapping from IRn into IRn.

(ii) Let X = {x : fX(x) > 0} be the support of X .

(iii) Suppose that for each u ∈ B = {u ∈ IRn : u = g(x) for some x ∈ X} there is a finite

number k = k(u) of inverses.

(iv) Suppose we can partition X into X0,X1, . . . ,Xk s.t.

(a) P (X ∈ X0) = 0.

(b) U = g(X) is a 1–to–1–mapping from Xl onto B for all l = 1, . . . , k, with inverse

transformation hl(u) =







hl1(u)
...

hln(u)







, u ∈ B, i.e., for each u ∈ B, hl(u) is the unique

x ∈ Xl such that u = g(x).

(v) Assume partial derivatives ∂xi

∂uj
= ∂hli(u)

∂uj
, l = 1, . . . , k, i, j = 1, . . . , n, exist and are

continuous.

(vi) Assume the Jacobian of each of the inverse transformations

Jl =

∣
∣
∣
∣
∣
∣
∣
∣

∂x1
∂u1

. . . ∂x1
∂un

...
...

∂xn

∂u1
. . . ∂xn

∂un

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∂hl1
∂u1

. . . ∂hl1
∂un

...
...

∂hln

∂u1
. . . ∂hln

∂un

∣
∣
∣
∣
∣
∣
∣
∣

, l = 1, . . . , k,

is different from 0 for all u in the range of g.

Then the joint pdf of U is given by

fU (u) =
k∑

l=1

| Jl | fX(hl1(u), . . . , hln(u)).
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Example 4.3.7:

Let X,Y be iid ∼ N(0, 1). Define

U = g1(X,Y ) =

{
X
Y , Y 6= 0

0, Y = 0

and

V = g2(X,Y ) =| Y | .

83



4.4 Order Statistics

(Based on Casella/Berger, Section 5.4)

Definition 4.4.1:

Let (X1, . . . ,Xn) be an n–rv. The kth order statistic X(k) is the kth smallest of the X ′
is, i.e.,

X(1) = min{X1, . . . ,Xn}, X(2) = min{{X1, . . . ,Xn} \ X(1)}, . . ., X(n) = max{X1, . . . ,Xn}.
It is X(1) ≤ X(2) ≤ . . . ≤ X(n) and {X(1),X(2), . . . ,X(n)} is the set of order statistics for

(X1, . . . ,Xn).

Note:

As shown in Theorem 4.3.2, X(1) and X(n) are rv’s. This result will be extended in the fol-

lowing Theorem:

Theorem 4.4.2:

Let (X1, . . . ,Xn) be an n–rv. Then the kth order statistic X(k), k = 1, . . . , n, is also a rv.

Theorem 4.4.3:

Let X1, . . . ,Xn be continuous iid rv’s with pdf fX . The joint pdf of X(1), . . . ,X(n) is

fX(1),...,X(n)
(x1, . . . , xn) =







n!
n∏

i=1

fX(xi), x1 ≤ x2 ≤ . . . ≤ xn

0, otherwise

Proof:

For the case n = 3, look at the following scenario how X1,X2, and X3 can be possibly ordered

to yield X(1) < X(2) < X(3). Columns represent X(1),X(2), and X(3). Rows represent X1,X2,

and X3:

X(1)X(2)X(3)

k = 1 : X1 < X2 < X3 :

X1

X2

X3

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0

0 1 0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

k = 2 : X1 < X3 < X2 :

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0

0 0 1

0 1 0

∣
∣
∣
∣
∣
∣
∣
∣

k = 3 : X2 < X1 < X3 :

∣
∣
∣
∣
∣
∣
∣
∣

0 1 0

1 0 0

0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
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k = 4 : X2 < X3 < X1 :

∣
∣
∣
∣
∣
∣
∣
∣

0 0 1

1 0 0

0 1 0

∣
∣
∣
∣
∣
∣
∣
∣

k = 5 : X3 < X1 < X2 :

∣
∣
∣
∣
∣
∣
∣
∣

0 1 0

0 0 1

1 0 0

∣
∣
∣
∣
∣
∣
∣
∣

k = 6 : X3 < X2 < X1 :

∣
∣
∣
∣
∣
∣
∣
∣

0 0 1

0 1 0

1 0 0

∣
∣
∣
∣
∣
∣
∣
∣

For n = 3, there are 3! = 6 possible arrangements.

For example, if k = 2, we have

X1 < X3 < X2

with corresponding inverse

X1 = X(1), X2 = X(3), X3 = X(2)

and

J2 = det












∂x1

∂x(1)

∂x1

∂x(2)

∂x1

∂x(3)
∂x2

∂x(1)

∂x2

∂x(2)

∂x2

∂x(3)
∂x3

∂x(1)

∂x3

∂x(2)

∂x3

∂x(3)












= det







1 0 0

0 0 1

0 1 0







with | J2 |= 1.
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Theorem 4.4.4: Let X1, . . . ,Xn be continuous iid rv’s with pdf fX and cdf FX . Then the

following holds:

(i) The marginal pdf of X(k), k = 1, . . . , n, is

fX(k)
(x) =

n!

(k − 1)!(n − k)!
(FX(x))k−1(1 − FX(x))n−kfX(x).

(ii) The joint pdf of X(j) and X(k), 1 ≤ j < k ≤ n, is

fX(j),X(k)
(xj , xk) =

n!

(j − 1)!(k − j − 1)!(n − k)!
×

(FX(xj))
j−1(FX(xk) − FX(xj))

k−j−1(1 − FX(xk))
n−kfX(xj)fX(xk)

if xj < xk and 0 otherwise.
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4.5 Multivariate Expectation

(Based on Casella/Berger, Sections 4.2, 4.6 & 4.7)

In this section, we assume that X ′ = (X1, . . . ,Xn) is an n–rv and g : IRn → IRm is a Borel–

measurable function.

Definition 4.5.1:

If m = 1, i.e., g is univariate, we define the following:

(i) Let X be discrete with joint pmf pi1,...,in = P (X1 = xi1 , . . . , Xn = xin). If
∑

i1,...,in

pi1,...,in · | g(xi1 , . . . , xin) |< ∞, we define E(g(X)) =
∑

i1,...,in

pi1,...,in · g(xi1 , . . . , xin)

and this value exists.

(ii) Let X be continuous with joint pdf fX(x). If

∫

IRn
| g(x) | fX(x) dx < ∞, we define

E(g(X)) =

∫

IRn
g(x)fX(x)dx and this value exists.

Note:

The above can be extended to vector–valued functions g (n > 1) in the obvious way. For

example, if g is the identity mapping from IRn → IRn, then

E(X) =







E(X1)
...

E(Xn)







=







µ1

...

µn







provided that E(| Xi |) < ∞ ∀i = 1, . . . , n.

Similarly, provided that all expectations exist, we get for the variance–covariance matrix:

V ar(X) = ΣX = E((X − E(X)) (X − E(X))′)

with (i, j)th component

E((Xi − E(Xi)) (Xj − E(Xj))) = Cov(Xi,Xj)

and with (i, i)th component

E((Xi − E(Xi)) (Xi − E(Xi))) = V ar(Xi) = σ2
i .

The correlation ρij of Xi and Xj is defined as

ρij =
Cov(Xi,Xj)

σiσj
.

87



Joint higher–order moments can be defined similarly when needed.

Note:

We are often interested in (weighted) sums of rv’s or products of rv’s and their expectations.

This will be addressed in the next two Theorems:

Theorem 4.5.2:

Let Xi, i = 1, . . . , n, be rv’s such that E(| Xi |) < ∞. Let a1, . . . , an ∈ IR and define

S =
n∑

i=1

aiXi. Then it holds that E(| S |) < ∞ and

E(S) =
n∑

i=1

aiE(Xi).

Proof:

Continuous case only:

Note:

If Xi, i = 1, . . . , n, are iid with E(Xi) = µ, then

E(X) = E(
1

n

n∑

i=1

Xi) =
n∑

i=1

1

n
E(Xi) = µ.

Theorem 4.5.3:

Let Xi, i = 1, . . . , n, be independent rv’s such that E(| Xi |) < ∞. Let gi, i = 1, . . . , n, be

Borel–measurable functions. Then

E(
n∏

i=1

gi(Xi)) =
n∏

i=1

E(gi(Xi))

if all expectations exist.
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Proof:

By Theorem 4.2.5, fX(x) =
n∏

i=1

fXi
(xi), and by Theorem 4.2.7, gi(Xi), i = 1, . . . , n, are also

independent. Therefore,

Corollary 4.5.4:

If X,Y are independent, then Cov(X,Y ) = 0.

Theorem 4.5.5:

Two rv’s X,Y are independent iff for all pairs of Borel–measurable functions g1 and g2 it

holds that E(g1(X) · g2(Y )) = E(g1(X)) · E(g2(Y )) if all expectations exist.

Proof:

“=⇒”: It follows from Theorem 4.5.3 and the independence of X and Y that

E(g1(X)g2(Y )) = E(g1(X)) · E(g2(Y )).

“⇐=”:

Definition 4.5.6:

The (ith1 , ith2 , . . . , ithn ) multi–way moment of X = (X1, . . . ,Xn) is defined as

mi1i2...in = E(Xi1
1 Xi2

2 . . . Xin
n )
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if it exists.

The (ith1 , ith2 , . . . , ithn ) multi–way central moment of X = (X1, . . . ,Xn) is defined as

µi1i2...in = E(
n∏

j=1

(Xj − E(Xj))
ij )

if it exists.

Note:

If we set ir = is = 1 and ij = 0 ∀j 6= r, s in Definition 4.5.6, we get

µ
0 . . . 0 1 0 . . . 0 1 0 . . . 0

↑
r

↑
s

= µrs = Cov(Xr,Xs).
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Theorem 4.5.7: Cauchy–Schwarz–Inequality

Let X,Y be 2 rv’s with finite variance. Then it holds:

(i) Cov(X,Y ) exists.

(ii) (E(XY ))2 ≤ E(X2)E(Y 2).

(iii) (E(XY ))2 = E(X2)E(Y 2) iff there exists an (α, β) ∈ IR2 − {(0, 0)} such that

P (αX + βY = 0) = 1.

Proof:

Assumptions: V ar(X), V ar(Y ) < ∞. Then also E(X2), E(X), E(Y 2), E(Y ) < ∞.

Result used in proof:
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4.6 Multivariate Generating Functions

(Based on Casella/Berger, Sections 4.2 & 4.6)

Definition 4.6.1:

Let X ′ = (X1, . . . ,Xn) be an n–rv. We define the multivariate moment generating

function (mmgf) of X as

MX(t) = E(et′X) = E(exp

(
n∑

i=1

tiXi

)

)

if this expectation exists for | t |=
√
√
√
√

n∑

i=1

t2i < h for some h > 0.

Definition 4.6.2:

Let X ′ = (X1, . . . ,Xn) be an n–rv. We define the n–dimensional characteristic function

ΦX : IRn → CI of X as

ΦX(t) = E(eit′X) = E(exp



i
n∑

j=1

tjXj



).

Note:

(i) ΦX(t) exists for any real–valued n–rv.

(ii) If MX(t) exists, then ΦX(t) = MX(it).

Theorem 4.6.3:

(i) If MX(t) exists, it is unique and uniquely determines the joint distribution of X . ΦX(t)

is also unique and uniquely determines the joint distribution of X .

(ii) MX(t) (if it exists) and ΦX(t) uniquely determine all marginal distributions of X, i.e.,

MXi
(ti) = MX(0, ti, 0) and and ΦXi

(ti) = ΦX(0, ti, 0).

(iii) Joint moments of all orders (if they exist) can be obtained as

mi1...in =
∂i1+i2+...+in

∂ti11 ∂ti22 . . . ∂tinn
MX(t)

∣
∣
∣
∣
∣
t=0

= E(Xi1
1 Xi2

2 . . . Xin
n )

if the mmgf exists and

mi1...in =
1

ii1+i2+...+in

∂i1+i2+...+in

∂ti11 ∂ti22 . . . ∂tinn
ΦX(0) = E(Xi1

1 Xi2
2 . . . Xin

n ).
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(iv) X1, . . . ,Xn are independent rv’s iff

MX(t1, . . . , tn) = MX(t1, 0) · MX(0, t2, 0) · . . . · MX(0, tn) ∀t1, . . . , tn ∈ IR,

given that MX(t) exists.

Similarly, X1, . . . ,Xn are independent rv’s iff

ΦX(t1, . . . , tn) = ΦX(t1, 0) · ΦX(0, t2, 0) · . . . · ΦX(0, tn) ∀t1, . . . , tn ∈ IR.

Theorem 4.6.4:

Let X1, . . . ,Xn be independent rv’s.

(i) If mgf’s MX1(t), . . . ,MXn(t) exist, then the mgf of Y =
n∑

i=1

aiXi is

MY (t) =
n∏

i=1

MXi
(ait) [Note: t]

on the common interval where all individual mgf’s exist.

(ii) The characteristic function of Y =
n∑

j=1

ajXj is

ΦY (t) =
n∏

j=1

ΦXj
(ajt) [Note: t]

(iii) If mgf’s MX1(t), . . . ,MXn(t) exist, then the mmgf of X is

MX(t) =
n∏

i=1

MXi
(ti) [Note: ti]

on the common interval where all individual mgf’s exist.

(iv) The n–dimensional characteristic function of X is

ΦX(t) =
n∏

j=1

ΦXj
(tj). [Note: tj]

Proof:

Homework (parts (ii) and (iv) only)
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Theorem 4.6.5:

Let X1, . . . ,Xn be independent discrete rv’s on the non–negative integers with pgf’s GX1(s), . . . , GXn(s).

The pgf of Y =
n∑

i=1

Xi is

GY (s) =
n∏

i=1

GXi
(s).

Proof:

Version 1:

Version 2: (case n = 2 only)

A generalized proof for n ≥ 3 needs to be done by induction on n.

Theorem 4.6.6:

Let X1, . . . ,XN be iid discrete rv’s on the non–negative integers with common pgf GX(s).

Let N be a discrete rv on the non–negative integers with pgf GN (s). Let N be independent

of the Xi’s. Define SN =
N∑

i=1

Xi. The pgf of SN is

GSN
(s) = GN (GX(s)).
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Proof:

Example 4.6.7:

Starting with a single cell at time 0, after one time unit there is probability p that the cell will

have split (2 cells), probability q that it will survive without splitting (1 cell), and probability

r that it will have died (0 cells). It holds that p, q, r ≥ 0 and p + q + r = 1. Any surviving

cells have the same probabilities of splitting or dying. What is the pgf for the # of cells at

time 2?

Theorem 4.6.8:

Let X1, . . . ,XN be iid rv’s with common mgf MX(t). Let N be a discrete rv on the non–

negative integers with mgf MN (t). Let N be independent of the Xi’s. Define SN =
N∑

i=1

Xi.

The mgf of SN is

MSN
(t) = MN (ln MX(t)).

Proof:

Consider the case that the Xi’s are non–negative integers:
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We know that

In the general case, i.e., if the X ′
is are not non–negative integers, we need results from Section

4.7 (conditional expectation) to proof this Theorem.
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4.7 Conditional Expectation

(Based on Casella/Berger, Section 4.4)

In Section 4.1, we established that the conditional pmf of X given Y = yj (for PY (yj) > 0)

is a pmf. For continuous rv’s X and Y , when fY (y) > 0, fX|Y (x | y) =
fX,Y (x,y)

fY (y) , and fX,Y

and fY are continuous, then fX|Y (x | y) is a pdf and it is the conditional pdf of X given Y = y.

Definition 4.7.1:

Let X,Y be rv’s on (Ω, L, P ). Let h be a Borel–measurable function. Then the conditional

expectation of h(X) given Y , i.e., E(h(X) | Y ), is a rv that takes the value E(h(X) | y). It

is defined as

E(h(X) | y) =







∑

x∈X
h(x)P (X = x | Y = y), if (X,Y ) is discrete and P (Y = y) > 0

∫ ∞

−∞
h(x)fX|Y (x | y)dx, if (X,Y ) is continuous and fY (y) > 0

Note:

Depending on the source, two different definitions of the conditional expectation exist:

(i) Casella and Berger (2002, p. 150), Miller and Miller (1999, p. 161), and Rohatgi and

Saleh (2001, p. 165) do not require that E(h(X)) exists. (ii) Rohatgi (1976, p. 168) and

Bickel and Doksum (2001, p. 479) require that E(h(X)) exists.

In case of the rv’s X and Y with joint pdf

fX,Y (x, y) = xe−x(y+1)I[0,∞)(x)I[0,∞)(y),

it holds in case (i) that E(Y | X) = 1
X even though E(Y ) does not exist (see Rohatgi and

Saleh 2001, p. 168, for details), whereas in case (ii), the conditional expectation does not exist!

Note:

(i) The rv E(h(X) | Y ) = g(Y ) is a function of Y as a rv.

(ii) The usual properties of expectations apply to the conditional expectation, given the

conditional expectations exist:

(a) E(c | Y ) = c ∀c ∈ IR.

(b) E(aX + b | Y ) = aE(X | Y ) + b ∀a, b ∈ IR.
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(c) If g1, g2 are Borel–measurable functions and if E(g1(X)), E(g2(X)) exist, then

E(a1g1(X) + a2g2(X) | Y ) = a1E(g1(X) | Y ) + a2E(g2(X) | Y ) ∀a1, a2 ∈ IR.

(d) If X ≥ 0, i.e., P (X ≥ 0) = 1, then E(X | Y ) ≥ 0.

(e) If X1 ≥ X2, i.e., P (X1 ≥ X2) = 1, then E(X1 | Y ) ≥ E(X2 | Y ).

(iii) Moments are defined in the usual way. If E(| X |r | Y ) < ∞, then E(Xr | Y ) exists

and is the rth conditional moment of X given Y .

Example 4.7.2:

Recall Example 4.1.12:

fX,Y (x, y) =

{

2, 0 < x < y < 1

0, otherwise

The conditional pdf’s fY |X(y | x) and fX|Y (x | y) have been calculated as:

fY |X(y | x) =
1

1 − x
for x < y < 1 (where 0 < x < 1)

and

fX|Y (x | y) =
1

y
for 0 < x < y (where 0 < y < 1).

Theorem 4.7.3:

If E(h(X)) exists, then

EY (EX|Y (h(X) | Y )) = E(h(X)).

Proof:

Continuous case only:
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Theorem 4.7.4:

If E(X2) exists, then

V arY (E(X | Y )) + EY (V ar(X | Y )) = V ar(X).

Proof:

Note:

If E(X2) exists, then V ar(X) ≥ V arY (E(X | Y )). V ar(X) = V arY (E(X | Y )) iff X = g(Y ).

The inequality directly follows from Theorem 4.7.4.

For equality, it is necessary that

EY (V ar(X | Y )) = EY (E((X − E(X | Y ))2 | Y )) = EY (E(X2 | Y ) − (E(X | Y ))2) = 0

which holds if X = E(X | Y ) = g(Y ).

If X,Y are independent, FX|Y (x | y) = FX(x) ∀x.

Thus, if E(h(X)) exists, then E(h(X) | Y ) = E(h(X)).

Proof: (of Theorem 4.6.8)
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4.8 Inequalities and Identities

(Based on Casella/Berger, Section 4.7)

Lemma 4.8.1:

Let a, b be positive numbers and p, q > 1 such that 1
p + 1

q = 1 (i.e., pq = p + q and q = p
p−1).

Then it holds that
1

p
ap +

1

q
bq ≥ ab

with equality iff ap = bq.

Proof:

Theorem 4.8.2: Hölders Inequality

Let X,Y be 2 rv’s. Let p, q > 1 such that 1
p + 1

q = 1 (i.e., pq = p + q and q = p
p−1). Then it

holds that

E(| XY |) ≤ (E(| X |p))
1
p (E(| Y |q))

1
q .

Proof:

In Lemma 4.8.1, let

a =
| X |

(E(| X |p))
1
p

> 0 and b =
| Y |

(E(| Y |q))
1
q

> 0.
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Note:

Note that Theorem 4.5.7 (ii) (Cauchy–Schwarz Inequality) is a special case of Theorem 4.8.2

with p = q = 2. If X ∼ Dirac(0) or Y ∼ Dirac(0) and it therefore holds that E(| X |) = 0 or

E(| Y |) = 0, the inequality trivially holds.

Theorem 4.8.3: Minkowski’s Inequality

Let X,Y be 2 rv’s. Then it holds for 1 ≤ p < ∞ that

(E(| X + Y |p))
1
p ≤ (E(| X |p))

1
p + (E(| Y |p))

1
p .

Proof:

Assume p > 1 (the inequality trivially holds for p = 1):

E(| X + Y |p) = E(| X + Y | · | X + Y |p−1)

Definition 4.8.4:

A function g(x) is convex if

g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y) ∀x, y ∈ IR ∀0 < λ < 1.

Note:

(i) Geometrically, a convex function falls above all of its tangent lines. Also, a connecting

line between any pairs of points (x, g(x)) and (y, g(y)) in the 2–dimensional plane always

falls above the curve.

(ii) A function g(x) is concave iff −g(x) is convex.
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Theorem 4.8.5: Jensen’s Inequality

Let X be a rv. If g(x) is a convex function, then

E(g(X)) ≥ g(E(X))

given that both expectations exist.

Proof:

Construct a tangent line l(x) to g(x) at the (constant) point x0 = E(X):

Note:

Typical convex functions g are:

(i) g1(x) =| x | ⇒ E(| X |) ≥| E(X) |.

(ii) g2(x) = x2 ⇒ E(X2) ≥ (E(X))2 ⇒ V ar(X) ≥ 0.

(iii) g3(x) = 1
xp for x > 0, p > 0 ⇒ E( 1

Xp ) ≥ 1
(E(X))p ; for p = 1: E( 1

X ) ≥ 1
E(X)

(iv) Other convex functions are xp for x > 0, p ≥ 1; θx for θ > 1; − ln(x) for x > 0; etc.

(v) Recall that if g is convex and differentiable, then g′′(x) ≥ 0 ∀x.

(vi) If the function g is concave, the direction of the inequality in Jensen’s Inequality is

reversed, i.e., E(g(X)) ≤ g(E(X)).

(vii) Does it hold that E
(

X
Y

)

equals E(X)
E(Y ) ? The answer is . . .
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Example 4.8.6:

Given the real numbers a1, a2, . . . , an > 0, we define

arithmetic mean : aA =
1

n
(a1 + a2 + . . . + an) =

1

n

n∑

i=1

ai

geometric mean : aG = (a1 · a2 · . . . · an)
1
n =

(
n∏

i=1

ai

) 1
n

harmonic mean : aH =
1

1
n

(
1
a1

+ 1
a2

+ . . . + 1
an

) =
1

1
n

n∑

i=1

1

ai

Let X be a rv that takes values a1, a2, . . . , an > 0 with probability 1
n each.

(i) aA ≥ aG:

(ii) aA ≥ aH :

(iii) aG ≥ aH :
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In summary, aH ≤ aG ≤ aA. Note that it would have been sufficient to prove steps (i) and

(iii) only to establish this result. However, step (ii) has been included to provide another

example how to apply Theorem 4.8.5.

Theorem 4.8.7: Covariance Inequality

Let X be a rv with finite mean µ.

(i) If g(x) is non–decreasing, then

E(g(X)(X − µ)) ≥ 0

if this expectation exists.

(ii) If g(x) is non–decreasing and h(x) is non–increasing, then

E(g(X)h(X)) ≤ E(g(X))E(h(X))

if all expectations exist.

(iii) If g(x) and h(x) are both non–decreasing or if g(x) and h(x) are both non–increasing,

then

E(g(X)h(X)) ≥ E(g(X))E(h(X))

if all expectations exist.

Proof:

Homework

Note:

Theorem 4.8.7 is called Covariance Inequality because

• (ii) implies Cov(g(X), h(X)) ≤ 0, and

• (iii) implies Cov(g(X), h(X)) ≥ 0.
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5 Particular Distributions

5.1 Multivariate Normal Distributions

(Based on Casella/Berger, Exercises 4.45 through 4.50)

Definition 5.1.1:

A rv X has a (univariate) Normal distribution, i.e., X ∼ N(µ, σ2) with µ ∈ IR and σ > 0,

iff it has the pdf

fX(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 .

X has a standard Normal distribution iff µ = 0 and σ2 = 1, i.e., X ∼ N(0, 1).

Note:

If X ∼ N(µ, σ2), then E(X) = µ and V ar(X) = σ2.

If X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2), X1 and X2 independent, and c1, c2 ∈ IR, then

Y = c1X1 + c2X2 ∼ N(c1µ1 + c2µ2, c
2
1σ

2
1 + c2

2σ
2
2).

Definition 5.1.2:

A 2–rv (X,Y ) has a bivariate Normal distribution iff there exist constants a11, a12, a21, a22, µ1, µ2 ∈
IR and iid N(0, 1) rv’s Z1 and Z2 such that

X = µ1 + a11Z1 + a12Z2, Y = µ2 + a21Z1 + a22Z2.

If we define

A =

(

a11 a12

a21 a22

)

, µ =

(

µ1

µ2

)

, X =

(

X

Y

)

, Z =

(

Z1

Z2

)

,

then we can write

X = AZ + µ.

Note:

(i) Recall that for X ∼ N(µ, σ2), X can be defined as X = σZ + µ, where Z ∼ N(0, 1).

(ii) E(X) = µ1 + a11E(Z1) + a12E(Z2) = µ1 and E(Y ) = µ2 + a21E(Z1) + a22E(Z2) = µ2.

The marginal distributions are X ∼ N(µ1, a
2
11 + a2

12) and Y ∼ N(µ2, a
2
21 + a2

22). Thus,

X and Y have (univariate) Normal marginal densities or degenerate marginal densities

(which correspond to Dirac distributions) if ai1 = ai2 = 0.
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(iii) There exists another (equivalent) formulation of the previous defintion using the joint

pdf (see Rohatgi, page 227).

Example: Let X ∼ N(µ1, σ
2
1), Y ∼ (µ2, σ

2
2), X and Y independent. What is the distribution

of

(

X

Y

)

?

Theorem 5.1.3:

Define g : IR2 → IR2 as g(x) = Cx + d with C ∈ IR2×2 a 2 × 2 matrix and d ∈ IR2 a

2–dimensional vector. If X is a bivariate Normal rv, then g(X) also is a bivariate Normal rv.

Proof:

Note:

ρσ1σ2 = Cov(X,Y ) = Cov(a11Z1 + a12Z2, a21Z1 + a22Z2)

= a11a21Cov(Z1, Z1) + (a11a22 + a12a21)Cov(Z1, Z2) + a12a22Cov(Z2, Z2)

= a11a21 + a12a22

since Z1, Z2 are iid N(0, 1) rv’s.

Definition 5.1.4:

The variance–covariance matrix of (X,Y ) is

Σ = AAT =

(

a11 a12

a21 a22

)(

a11 a21

a12 a22

)

=

(

a2
11 + a2

12 a11a21 + a12a22

a11a21 + a12a22 a2
21 + a2

22

)

=

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

.
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Note:

det(Σ) = | Σ | = σ2
1σ

2
2 − ρ2σ2

1σ
2
2 = σ2

1σ
2
2(1 − ρ2),

√

|Σ| = σ1σ2

√

1 − ρ2

and

Σ−1 =
1

|Σ| ·
(

σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)

=





1
σ2
1(1−ρ2)

−ρ
σ1σ2(1−ρ2)

−ρ
σ1σ2(1−ρ2)

1
σ2
2(1−ρ2)





Theorem 5.1.5:

Assume that σ1 > 0, σ2 > 0 and | ρ |< 1. Then the joint pdf of X = (X,Y ) = AZ + µ (as

defined in Definition 5.1.2) is

fX(x) =
1

2π
√

| Σ | exp

(

−1

2
(x − µ)′Σ−1(x − µ)

)

=
1

2πσ1σ2

√

1 − ρ2
exp

(

− 1

2(1 − ρ2)

((
x − µ1

σ1

)2

− 2ρ

(
x − µ1

σ1

)(
y − µ2

σ2

)

+

(
y − µ2

σ2

)2
))

Proof:

Since Σ is positive definite and symmetric, A is invertible.

The mapping Z → X is 1–to–1:
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The second line of the Theorem is based on the transformations stated in the Note following

Definition 5.1.4:

fX(x) =
1

2πσ1σ2

√

1 − ρ2
exp

(

− 1

2(1 − ρ2)

((
x − µ1

σ1

)2

− 2ρ

(
x − µ1

σ1

)(
y − µ2

σ2

)

+

(
y − µ2

σ2

)2
))

Note:

In the situation of Theorem 5.1.5, we say that (X,Y ) ∼ N(µ1, µ2, σ
2
1 , σ

2
2 , ρ).

Theorem 5.1.6:

If (X,Y ) has a non–degenerate N(µ1, µ2, σ
2
1 , σ

2
2 , ρ) distribution, then the conditional distri-

bution of X given Y = y is

N(µ1 + ρ
σ1

σ2
(y − µ2), σ

2
1(1 − ρ2)).

Proof:

Homework

Example 5.1.7:

Let rv’s (X1, Y1) be N(0, 0, 1, 1, 0) with pdf f1(x, y) and (X2, Y2) be N(0, 0, 1, 1, ρ) with pdf

f2(x, y). Let (X,Y ) be the rv that corresponds to the pdf

fX,Y (x, y) =
1

2
f1(x, y) +

1

2
f2(x, y).

(X,Y ) is a bivariate Normal rv iff ρ = 0. However, the marginal distributions of X and Y are

always N(0, 1) distributions. See also Rohatgi, page 229, Remark 2.
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Theorem 5.1.8:

The mgf MX(t) of a non–singular bivariate Normal rv X ′ = (X,Y ) is

MX(t) = MX,Y (t1, t2) = exp(µ′t+
1

2
t′Σt) = exp

(

µ1t1 + µ2t2 +
1

2
(σ2

1t
2
1 + σ2

2t
2
2 + 2ρσ1σ2t1t2)

)

.

Proof:

The mgf of a univariate Normal rv X ∼ N(µ, σ2) will be used to develop the mgf of a bivariate

Normal rv X ′ = (X,Y ):

Bivariate Normal mgf:
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(A) follows from Theorem 5.1.6 since Y | X ∼ N(βX , σ2
2(1− ρ2)). (B) follows when we apply

our calculations of the mgf of a N(µ, σ2) distribution to a N(βX , σ2
2(1−ρ2)) distribution. (C)

holds since the integral represents MX(t1 + ρσ2
σ1

t2).

Corollary 5.1.9:

Let (X,Y ) be a bivariate Normal rv. X and Y are independent iff ρ = 0.

Definition 5.1.10:

Let Z be a k–rv of k iid N(0, 1) rv’s. Let A ∈ IRk×k be a k × k matrix, and let µ ∈ IRk be

a k–dimensional vector. Then X = AZ + µ has a multivariate Normal distribution with

mean vector µ and variance–covariance matrix Σ = AA′.

Note:

(i) If Σ is non–singular, X has the joint pdf

fX(x) =
1

(2π)k/2(| Σ |)1/2
exp

(

−1

2
(x − µ)′Σ−1(x − µ)

)

.

If Σ is singular, the joint pdf does exist but it cannot be written explicitly.

(ii) If Σ is singular, then X − µ takes values in a linear subspace of IRk with probability 1.

(iii) If Σ is non–singular, then X has mgf

MX(t) = exp(µ′t +
1

2
t′Σt).
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(iv) X has characteristic function

ΦX(t) = exp(iµ′t − 1

2
t′Σt)

(no matter whether Σ is singular or non–singular).

(v) See Searle, S. R. (1971): “Linear Models”, Chapter 2.7, for more details on singular

Normal distributions.

Theorem 5.1.11:

The components X1, . . . ,Xk of a normally distributed k–rv X are independent iff

Cov(Xi,Xj) = 0 ∀i, j = 1, . . . , k, i 6= j.

Theorem 5.1.12:

Let X ′ = (X1, . . . ,Xk). X has a k–dimensional Normal distribution iff every linear function

of X, i.e., X ′t = t1X1 + t2X2 + . . . + tkXk, has a univariate Normal distribution.

Proof:

The Note following Definition 5.1.1 states that any linear function of two Normal rv’s has a

univariate Normal distribution. By induction on k, we can show that every linear function of

X, i.e., X ′t, has a univariate Normal distribution.

Conversely, if X ′t has a univariate Normal distribution, we know from Theorem 5.1.8 that

MX′t(s) = exp

(

E(X ′t) · s +
1

2
V ar(X ′t) · s2

)

= exp

(

µ′ts +
1

2
t′Σts2

)

=⇒ MX′t(1) = exp

(

µ′t +
1

2
t′Σt

)

= MX(t)

By uniqueness of the mgf and Note (iii) that follows Definition 5.1.10, X has a multivariate

Normal distribution.
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5.2 Exponential Family of Distributions

(Based on Casella/Berger, Section 3.4)

Definition 5.2.1:

Let ϑ be an interval on the real line. Let {f(·; θ) : θ ∈ ϑ} be a family of pdf’s (or pmf’s). We

assume that the set {x : f(x; θ) > 0} is independent of θ, where x = (x1, . . . , xn).

We say that the family {f(·; θ) : θ ∈ ϑ} is a one–parameter exponential family if there

exist real–valued functions Q(θ) and D(θ) on ϑ and Borel–measurable functions T (X) and

S(X) on IRn such that

f(x; θ) = exp(Q(θ)T (x) + D(θ) + S(x)).

Note:

We can also write f(x; θ) as

f(x; η) = h(x)c(η) exp(ηT (x))

where h(x) = exp(S(x)), η = Q(θ), and c(η) = exp(D(Q−1(η))), and call this the exponen-

tial family in canonical form for a natural parameter η.

Definition 5.2.2:

Let ϑ ⊆ IRk be a k–dimensional interval. Let {f(·; θ) : θ ∈ ϑ} be a family of pdf’s (or pmf’s).

We assume that the set {x : f(x; θ) > 0} is independent of θ, where x = (x1, . . . , xn).

We say that the family {f(·; θ) : θ ∈ ϑ} is a k–parameter exponential family if there

exist real–valued functions Q1(θ), . . . Qk(θ) and D(θ) on ϑ and Borel–measurable functions

T1(X), . . . , Tk(X) and S(X) on IRn such that

f(x; θ) = exp

(
k∑

i=1

Qi(θ)Ti(x) + D(θ) + S(x)

)

.

Note:

Similar to the Note following Definition 5.2.1, we can express the k–parameter exponential

family in canonical form for a natural k × 1 parameter vector η = (η1, . . . , ηk)
′ as

f(x; η) = h(x)c(η) exp

(
k∑

i=1

ηiTi(x)

)

,
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and define the natural parameter space as the set of points η ∈ W ⊆ IRn for which the

integral
∫

IRn
exp

(
k∑

i=1

ηiTi(x)

)

h(x)dx

is finite.

Note:

If the support of the family of pdf’s is some fixed interval (a, b), we can bring the expression

I(a,b)(x) into exponential form as exp(ln I(a,b)(x)) and then continue to write the pdf’s as an

exponential family as defined above, given this family is an exponential family. Note that for

I(a,b)(x) ∈ {0, 1}, it follows that ln I(a,b)(x) ∈ {−∞, 0} and therefore exp(ln I(a,b)(x)) ∈ {0, 1}
as needed.

Example 5.2.3:

Let X ∼ N(µ, σ2) with both parameters µ and σ2 unknown. We have:

f(x; θ) =
1√

2πσ2
exp

(

− 1

2σ2
(x − µ)2

)

= exp

(

− 1

2σ2
x2 +

µ

σ2
x − µ2

2σ2
− 1

2
ln(2πσ2)

)

θ = (µ, σ2)

ϑ = {(µ, σ2) : µ ∈ IR, σ2 > 0}

Therefore,

Q1(θ) = − 1

2σ2

T1(x) = x2

Q2(θ) =
µ

σ2

T2(x) = x

D(θ) = − µ2

2σ2
− 1

2
ln(2πσ2)

S(x) = 0

Thus, this is a 2–parameter exponential family.

Canonical form:

f(x; θ) = exp(Q1(θ)T1(x) + Q2(θ)T2(x) + D(θ) + S(x))

=⇒ h(x) = exp(S(x)) = exp(0) = 1

η =

(

η1

η2

)

=

(

Q1(θ)

Q2(θ)

)

=






− 1

2σ2
µ

σ2





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Therefore, when we solve η1 = − 1

2σ2
, η2 =

µ

σ2
for σ2, µ, we get

σ2 = − 1

2η1
, µ = σ2η2 = − 1

2η1
η2 = − η2

2η1
.

Thus,

C(η) = exp(D(Q−1(η)))

= exp






−
(

− η2

2η1

)2

2
(

− 1
2η1

) − 1

2
ln

(

2π

(

− 1

2η1

))






= exp

(

η2
2

4η1
− 1

2
ln

(

− π

η1

))

Therefore, f(x; θ) can be reparametrized in canonical form as

f(x; η) = 1 · exp

(

η2
2

4η1
− 1

2
ln

(

− π

η1

))

exp
(

η1x
2 + η2x

)

.

The natural parameter space is

{(η1, η2) | η1 < 0, η2 ∈ IR}

because ∫ ∞

−∞
exp

(

η1x
2 + η2x

)

· 1dx < ∞

for η1 < 0 (independent from η2), but

∫ ∞

−∞
exp

(

η1x
2 + η2x

)

· 1dx undefined

for η1 ≥ 0 (independent from η2).

To Be Continued . . .
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