Statistics 1040, Section 008, Quiz 1 (20 Points)

Friday, January 11, 2008

Your Name:
from: FPP, Until 2, Review Esterisk 4 & Chris 1, Trainey 2005 a Tariney 1006, Counting Question 1: Controlled Experiments/Observational Studies I (13 Points) (John School Will But The Public Health Service studied the effects of smoking on health, in a large sample of representative households. For men and for women in each age group, those who never smoked were on average somewhat healthier than the current smokers, but the current smokers were on average much healthier than those who had recently stopped smoking. • (6 Points) Why did they study men and women and the different age groups separately?
They studied the groups separately to climinate the effects of the confounding factors of age and genter." (4)

• (7 Points) The lesson seems to be that you shouldn't start smoking, but once you've started, don't stop. Comment briefly.

Old is not an appropriate conclusion because there are confounding factors. For estample, those who recently stopped smoking may have done so on doctor's orders, because they had severe health problems. (4)

Please turn over!

t,

	from: FPP, p 10-11, " Lammany" & Quiz 1, Thring 2005 & Spring 2006, Overtion 2
	Question 2: Controlled Experiments/Observational Studies II (7 Points)
	(Schutions: > Granse West
	Fill the gaps in the following statements using the most appropriate words from the list
	below:
	\sim (1)
	Statisticians want to know the effect of a trentment [or raune] (like the Salk vac-
	cine) on a response (like getting polio). To find out, they compare the responses of a
	treatment group (1) with a control group (1).
	The state of the s
	To make sure that the treatment group is like the control group, investigators put
	Whenever possible, the control group is given a
	neutral but resembles the treatment.
	In a <u>dulle-lkind</u> experiment, the subjects do not know whether they are
	in the treatment or in the control group; neither do those who evaluate the responses.
	2
V	placebo –
V	double-blind
Ż	treatment group
•	observational study
V	random
	single-blind
1	vaccine
. • 1	confounding factor ·
	objects
V	control group
	controlled experiment

✓subjects
polio
✓treatment

Statistics 1040, Section 008, Quiz 2 (20 Points)

Friday, January 18, 2008

Your	Name:	

from: FPP, Chapter 3, Perù no Exercise 2 Question 1: Histograms (20 Points)

(Tolutions: -> Worklook)

The age distribution of people in the U.S. in 2004 is shown below.

		. ()	
Age	Percent of population	Width	Height
0-5	7	5	715 = 1.4
5-15	14	10	14/10 = 1.4
15-20	7	5	715 = 1.4
20-25	7	5	715 = 1.4
25-30	7	5	715 = 1.4
30-35	7	5	715 = 1.4
35-45	15	10	15/10 = 1.5
45-55	14	(0	14/10 = 1.4
55-65	10	lo	10/10 = 1.0
65-75 %5	6	10	6/10 =0.6
75 and over	6	lO	6/10 = 0.6

1. (12 Points) Draw a histogram for these data on the graph paper provided. (The class intervals include the left endpoint, not the right; for instance, on the second line of the table, 14% of the people were age 5 years or more but had not yet turned 15. The interval "75 and over" can be ended at 85. Men and women are combined in the data.) Make sure to label the axes.

1.

2. (2 Points) Are there more children age 1 or elders age 71?

Circle your answer.

ax 71: 0.6%

3. (2 Points) Are there more 21-year-olds) or 61-year-olds? Circle your answer.

→ age 21: 1.4% age 61; 1.0%

4. (2 Points) Are there more people age 0-4 or 65-69? Circle your answer.

> age 0-4: 4. 1.4% = 5.6%

age 65-69: 4.0.6% = 2.4%

5. (2 Points) The percentage of people age 35 and over is around 25% 50%, or 75%? Circle your answer.

our up percentuges up to age 35:

7% + 14% + 7% + 7% + 7% + 7% = 49%

Therefore, "age 35 and over" = 100% - 49% = 51% (Closed to 50%)

[Mte: eaglantions weren't required!]

Statistics 1040, Section 008, Quiz 3 (20 Points)

Friday, January 25, 2008

Your Name:	
from Ouis 3, Thring 2006, Oustion 1	(Tolutions - Slower Web Page)
Question 1: Measures of Center and Spread I (14 Points)	

Below are the temperatures (in degrees Celsius) for five locations in Utah on Tuesday, January 20, 2004, at 9pm SMT, as found on www.wunderground.com:

Temperature	
-15	- I for each calculation error
-14	The man and the plant
-12	
5	
-4	
	-15 -14 -12

Show your work!

1. (5 Points) Find the average temperature in degrees Celsius for these locations in Utah.

$$avg = \frac{(-15)+(-14)+(-12)+5+(-4)}{5} = \frac{-40}{5} = -8^{\circ}C$$

2. (3 Points) Find the median temperature in degrees Celsius for these locations in Utah.

3. (6 Points) Find the standard deviation of the temperatures for these locations in Utah.

1)
$$av_3 = -8$$

2) $-15 - (-8) = -7$
 $-14 - (-8) = -6$
 $-12 - (-8) = -13$
 $-13^2 = 169$
 $-14 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 13$
 $-16 - (-8) = 1$

from Quiz 3, Inving 2006, Question 2

(Yolistions -> lourse Web Page)

Question 2: Measures of Center and Spread II (6 Points)

To answer the questions below, you need to apply your knowledge about average, median, and standard deviation. No calculation is needed!

1. (3 Points) If the St. George temperature (the only positive value) is removed from the list, what will happen to the average and median? Choose the most appropriate answer and explain briefly:

(a) The average will change more than the median;

(b) The median will change more than the average;

(c) Both average and median will stay exactly the same.

+5 is a very large value. We have seen in class how such a large value pulls

(c) Both average and median will stay exactly the average towards it.

New redian - new avg (-11.25)

(-13)

XX + X + |

2. (3 Points) If the St. George temperature (the only positive value) is removed from the list, what will happen to the standard deviation? Choose the most appropriate (-12 th-13) answer and **explain** briefly:

(a) The SD will become bigger;

- (b) The SD will become smaller;
 - (c) The SD will become negative;
- (d) The SD will not change at all.

Eseplanation:

The SD describes the spread of the data. If the largest value is removed, the spread can only become smaller (from 7.56 to 4.32). the spread can only become smaller (from 7.56 to 4.32).

The SD is never negative (and the SD is O only if all numbers are esearthy the same - meaning there is no spread).

Formulas:

 $avg = \frac{sum of all numbers}{how many numbers}$

 $SD = \sqrt{\text{average of [(deviations from avg)}^2]}$

Statistics 1040, Section 008, Quiz 4 (20 Points)

Friday, January 31, 2008 February 1,

Your Name: _	
from: Milterm 1, Thing 2005, Question 1	(Tolutions: -> Course With Page
Question 1: Normal Approximation for Data (20 Points)	
The Graduate Record Examination (GRE) is a test taken by control to pursue a graduate degree in the United States. For around who took the General GRE Test in 2001–02, the mean for the tion of the exam was 700 and the standard deviation was 120 histogram follows a normal curve. Show your work!	d 146,000 non-US citizens e quantitative ability por We can assume that the -2 for each calculation for-
• (7 Points) The percentage of non-US citizens who score GRE test is roughly _59.87 %.	ed more than 670 on the
$0 \le u = \frac{670-700}{120} = -0.25 \le u.$	
070 700 Darea from -0.25 to 0.25: 19.74% (2)	
3 and above -0.25 : $\frac{19.74\%}{2} + 50\% = 9.87\%$	%+ 50% = <u>59.87%</u> (2)
• (7 Points) The percentage of non-US citizens who score is about <u>(5. 73</u> %.	*•
	$: \frac{580-700}{120} = -1.00 \text{ s.u.} $
340 540 700 2 ana fram -3.00 to 3.00: 99.73% (1) and	a from -1.00 to 1.00: 68.27% (1)
-3.00-1.00 0 S.4. (3) area from - 3.00 to -1.00: 99.73%-6817	$\frac{\%}{2} = \frac{31.46\%}{2} = \frac{15.73\%}{3}$
• (6 Points) In order to be among the top 15% of all non-U have obtained a minimum GRE score of about	JS citizens, a student must
707. 15% Darea from -1.05 to 1.05: 7 700 12 -2 0 7 Su. 2 original units:	40.63% (doset to 70%)
$-20 \pm s.a.$ $1.05 \cdot 120 + 700 = 126 + 3$	700 = 826 Please turn over!
	ricase tarii over.

L.

Statistics 1040, Section 008, Quiz 5 (20 Points)

Friday, February 8, 2008

	Your Name:
from: Ouis S, Fall 2007, Outstan Question 1: Measurement Error (7 P	(Telutions: -> Course Web Page)
You send a yardstick to a local laborare peated three times. They report the	tory for calibration, asking that the procedure be following values:
35.96 inches 3	36.01 inches 36.03 inches
	rth calibration, you would expect to get 36 inches, .03 inches or so (c) .06 inches or so
Circle your answer and explain. $0.87 = \frac{35.96 + 36.01 + 36.03}{3}$ $0.87 = \frac{35.96 - 361^2 + (36.01 - 36)^2}{3}$ Question 2: Correlation (7 Points)	= 36 (1) 2 + (36.03-36) ² ~ 0.03 = "gise or take" (2) from: Ouiz 5, Fall 2007, Ouestan 2 (Idulum -> Course
part credit is given. After grading the number of questions the student got ri	section. There are 10 questions on the quiz and no Wib-Ray papers, the TA writes down for each student the ght and the number wrong. The average number of; the average number of wrong answers is 3.6 with
answers is	number of right answers and the number of wrong $(b) -0.50 \qquad (c) +0.50$ $0 \qquad (f) -2.0 \qquad (g) +2.0$ Il without the data
Circle your answer and explain.	Number wrong = 10- Number right! To, all the points on a sabler diagram (3) (for #wrong vs. # right) Please turn over! lie on a straight line which slopes down.

(Hlutions: -> Gurse with Page)

In a class experiment last week, we measured the length of a pencil (including the eraser) 13 times. The average length of our 13 measurements was 7.5 inches, with an SD of 0.07 inches. Recall that 1 inch = 2.54 cm.

If we translate these results into cm, the average length will be <u>19.05</u> cm, with a standard deviation of <u>0.1778</u> cm.

Be precise and report all digits from your calculator this time (e.g., if your calculator shows 27.8835, then report this number and do not report 28 instead).

Show your work! (1) any (in cm): $7.5 \cdot 2.54 = 19.05 \text{ cm}$ 50 (in cm): 0.07.2.54 = 0.1778 cm

Formulas:

 $avg = \frac{sum of all numbers}{how many numbers}$

 $SD = \sqrt{\text{average of [(deviations from avg)}^2]}$

١.

Statistics 1040, Section 008, Quiz 6 (20 Points)

Friday, February 22, 2008

Your Name:			
from: Midterm 1,	Full 2007, Question 4	(Tobutions: > Wib Page	
•	on / Regression (20 Points)	•	
		eight and handspan size is summa-	
rized as follows:	point of averages	about 95% of date within $68 \pm 2.4.0$ SD = 4.0 inches = 60×76	
X height:	average = 68.0 inches	SD = 4.0 inches = 60 % 76	
$m{\gamma}$ handspan size:	average = 20.9 inches $r = 0.75$	SD = 1.9 inches	
Fill the blanks in the stanswers.		the work needed to obtain the = 17.1 to 247	
diagrams is the convex explanation is a second seco	the summary statistics above, udent who is 60 inches tall? 8.05 inches = -2 5 + 20.9 = 8.05 inches		
3. (6 Points) Find the The answer is:	the r.m.s. error for your answer $\frac{1.26 \text{ m/s}}{1-0.75^2} \cdot 1.9 = 1.3$	26 in iles no square or inwest SD	
measurements to	would the correlation coefficien centimeters? (There are 2.54 c = 0.75 (it won A dan		

1

Exclude impossible Mets.

Formulas:

r.m.s. error =
$$\sqrt{1-r^2} \times \text{SD}_y$$

Statistics 1040, Section 008, Quiz 7 (20 Points)

Friday, February 29, 2008

Your Name: _	
rom: Ouis 7, Inmy 2005, Outin (Question 1: Chance/Probability I (15 Points)	(Tolutions: -) Course will Pauge
Juestion 1: Chance/Probability I (15 Points) n a box of 15 chocolates, 5 are mint, 3 are orange, 5 are calchoose two chocolates at random (without replacement!). Show your work! 1. (5 Points) What is the chance that the first is mint or of the chance is	ramel, and 2 are cherry. I I for each calculation broot (or no Airal result in the orange? If % > 100% or % < 0% Aor mutually exclusive boents) 0.533=55.3% th orange?
The chance is 7.14 %. first orange: 3/15 peand coramel, 5/2 yiven first orange 14	
given first orange 14 first orange and second euramel: $\frac{3}{15}$, $\frac{5}{14}$ = $\frac{15}{210}$ = 0.0 (1) (2) (2)	Please turn over!

from: Quis 7, Inving 2005, Austin 2 & FPP, Unter (3, Review Exercise 7, p. 235)
Question 2: Chance/Probability II (5 Points)

A coin is tossed six times. Two possible sequences of results are

(Yolutions: -> lourse Web Pag & Workbook)

(i) H T T H T H

(ii) H H H H H H

(The coin must land on H or T in the order given; H = heads, T = tails).

Which of the following is correct?

Circle your answer and explain:

- 1. Sequence (i) is more likely.
- 2. Sequence (ii) is more likely.
- 3. Both sequences are equally likely.

Every possible string of H's and T's is equally likely. (2)
In fact, there are 2.2.2.2.2.2=26=64 possible sequences
of H's & T's in size coin tosses. Thus, He chance for each of
these sequences is $\frac{1}{64} = 0.0156 = 1.56\%$.

Note that this question did not ask whiter yetting 3 H's is more or less likely than getting 6 H's. In fact, when we write down all possible sequences of H's & T's in size coin tosses, we will see that there are far more (different) sequences with 3 H's those there are sequences with 6 H's (just one!).

١,

Statistics 1040, Section 008, Quiz 8 (20 Points)

Friday, March 7, 2008

from: Ouis 7, Fall 2003	Your Name:	
	, Ouis 8, Jany 2006	(Tolutions: - > lourse Webluge)
Question 1: Box Models, EV,		• ,

You are participating in a new game that consists of tossing a 10-sided die, with sides numbered from 1 to 10. The die is fair, i.e., it has the same chance of landing on any side. Every time the die shows a number that is a multiple of 3 (i.e., 3, 6, or 9) you win \$3, otherwise you lose \$1, except when the die lands on 10, in which case you win (or lose) nothing (\$0). Assume you are tossing this die 200 times.

Show your work!

1. (3 Points) Find the box model.

2. (4 Points) Find the expected value of your gain/loss.

box ang =
$$\frac{3 \cdot 3 + 1 \cdot 0 + 6 \cdot (-1)}{10} = \frac{3}{10} = 0.3$$

in 2,83.1
-1 for each calculation error -1 for each mixer mixture -2 for each mixer mixture 10.3 ten mixing)

3. (5 Points) Find the standard error of your gain/loss.

$$\int_{0}^{10} |x| = \int_{0}^{3 \cdot (3-0.3)^{2} + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 2 \cdot 2^{2} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2} + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09 + (0-0.3)^{2}} |x| = \int_{0}^{3 \cdot 7 \cdot 2^{9} + 0.09$$

ì

Question 2: Law of Averages (8 Points) Law of Averages (8 Points) Law of Averages (8 Points) Circle your answer for each of the following four parts	[Answer: -> Worklook!] -> Course Wib Page Dearts. You don't have to provide any
explanations. [Esplanations from worklook]	
	of times, and you win \$1 if it shows win, you need a large perastage error, I that is more likely in 60 rds.
2. (2 Points) As in 1.), but you win the dollar if 15%. Which is better: 60 rolls or 600 rolls?	the percentage of aces is more than in you want a small percentage errot.
3. (2 Points) As in 1.), but you win the dollar 15% and 20%. Which is better: 60 rolls or 600 rolls?	if the percentage of aces is between from you want a small percentage love.
which is better: 60 rolls or 600 rolls?	if the percentage of aces is exactly Blause to get beautify the expected whe means getting eseatly seri chance croot, and that is most likely with fewer rolls.

Formulas:

 $box average = \frac{sum of all numbers in box}{how many numbers in box}$

box SD = $\sqrt{\text{average of [(deviations from box average)}^2]}$

 $\mathrm{EV}_{sum} = \mathrm{number}$ of draws \times box average

 $SE_{sum} = \sqrt{\text{number of draws}} \times \text{box SD}$

Statistics 1040, Section 008, Quiz 9 (20 Points)

Friday, March 21, 2008

just 1.1-1 if dightly incornet number of 10/10 & in lose

Your Name:

-2 il lose gimas 100

from: Onis 9, Tyring 2005, Oustern 1

Question 1: EV, SE, and Normal Curve (16 Points)

(Yolutums: -> lourse Web Page)
- 3 if lox jortums worthing
other than [] (] 's

Suppose it is known that 10% of all people in Utah have a specific blood type. Suppose I take a random sample of 500 Utah residents ... Show your work! - A # draws missing

1. (4 Points) Find the box model.

| 1 × 1 9 × 0. | or 10 × 1 90 × 0 | (ne ex interested in)

H draws: 500 # draws: 500 | 0: all other blad types

2. (6 Points) The expected number of Utah residents in this sample of 500 who have that specific blood type is _______ with an SE of ______.

tose any: fraction of
$$\boxed{0}$$
's = $\frac{1}{10}$ = 0.1

lose SD = $\sqrt{\frac{1}{10}}$ fraction: fraction $\sqrt{\frac{1}{10}}$ = $\sqrt{\frac{5}{10}}$ = $\sqrt{\frac{3}{10}}$ = 0.3

-1 for each calculation error in take $\sqrt{\frac{1}{10}}$ of $\boxed{0}$'s $\sqrt{\frac{1}{10}}$'s $\sqrt{\frac{5}{10}}$ = $\sqrt{\frac{3}{10}}$ = 0.3

-2 for each mixed mixed mixed mixed mixed mixed mixed $\sqrt{\frac{1}{10}}$ = $\sqrt{\frac{5}{10}}$ = $\sqrt{\frac{3}{10}}$ = $\sqrt{\frac{5}{10}}$ = $\sqrt{\frac{3}{10}}$ = $\sqrt{\frac{5}{10}}$ = $\sqrt{\frac{3}{10}}$ = $\sqrt{\frac{5}{10}}$ =

EV sum = 500.0.1=50

or der missing

3. (6 Points) The chance that fewer than 40 Utah residents in this sample have that blood type is about 6.68 %.

$$Su: \frac{40-50}{6.7} = -645 \approx -15$$

area between - 1.5 and 1.5: 86.64%

- 1 for each intentation voor

- -2 for incorrect curve parameters, i.e., anything else than EV and SE
- -2 for incorrect s.u.
- for incorrect table value for incorrect area under the owne

from: Quiz 9, Fronz 2005, Question 2. Question 2: Probability Histograms (4 Points)

(Yolistons: Strusse Web Page

Shown below are probability histograms for the sum of (a) 100, (b) 400, and (c) 900 draws from the box $99 \times \boxed{0}$ $1 \times \boxed{1}$. Which histogram is which? Explain briefly.

Explanation: The histograms get doser to the normal curve as the number of draws goes up.

Formulas:

١,

$$box average = \frac{sum of all numbers in box}{how many numbers in box}$$

box SD =
$$\sqrt{\text{average of [(deviations from box average)^2]}}$$

$$\mathrm{EV}_{sum} = \mathrm{number}$$
 of draws \times box average

$$SE_{sum} = \sqrt{\text{number of draws}} \times \text{box SD}$$

Shortcut formulas for a box that contains only two different numbers:

$$average = \frac{(smaller \times how many) + (bigger \times how many)}{how many tickets in the box}$$

$$SD = (bigger - smaller) \times \sqrt{\begin{array}{cc} fraction \\ bigger \end{array}} \times \begin{array}{cc} fraction \\ smaller \end{array}$$

Shortcut formulas for a box that contains only $\boxed{\mathbf{0}}$'s and $\boxed{\mathbf{1}}$'s:

$$average = \frac{number\ of\ \boxed{1}\ 's}{how\ many\ tickets\ in\ the\ box}$$

$$SD = \sqrt{\begin{array}{ccc} fraction & fraction \\ of \boxed{1} \text{ 's } & of \boxed{0} \text{ 's} \end{array}}$$

Statistics 1040, Section 008, Quiz 10 (20 Points)

Wednesday, April 9, 2008

Your Name:	
from: Quiz 10, Fell 2004 & Quiz 10, Spring 2006 Question 1: Confidence Intervals (20 Points)	(Selutions -> Course Web-Page)
Political events in the Fall of 2004 were in focus of many su With four members of the Bush Cabinet resigning within a foural concern for every U.S. citizen at that time was: Will the have a positive or negative impact on U.S. policy?	ew days in Fall 2004, a nat-
This question was asked to a sample of 787 U.S. citizens: 299 o	f them answered "Positive".
1. (14 Points) Construct a 87% confidence interval for the citizens who think that the Bush Cabinet resignations we on U.S. policy.	
Show your work.	1: Positive
bose unknown: [2x [] ?x []	1: Positive 0: Negative
# draws: 787 Dample $\% = \frac{299}{787} = 0.38 = 38\% = population$ SD lose = $\sqrt{0.38 \cdot 0.62} = \sqrt{0.2356} = 0.483$	~ (assumption) (via holstop)
$SE_{Sqm} = \sqrt{787} \cdot 0.485 = 28.05 \cdot 0.485 = $ $SE_{\%} = \frac{13.6}{787} \cdot 100\% = 1.73\%$	13.6 (2)
87% CI: sample % ± (moltiplier for 87%). SE%	-150 1.50 Su
= 38% ± 1.50 · 1.73%	-2 lack calculation erro
= 38% ± 2.6%	-1 if to forgotten
= 35.4% to 40.6% (9)	Please turn over!

- 2. (6 Points) For each of the following situations, explain why or why not it would be possible to constuct a 87% confidence interval for the percentage of all U.S. citizens who think that the Bush Cabinet resignations will have positive impact on U.S. policy. Please do not construct the actual confidence interval just answer each question with Yes or No and provide a very brief explanation.
 - The sample of 787 U.S. citizens was obtained by using a computer to randomly generate a sufficent number of valid telephone numbers (including area code) and calling these numbers until 787 valid answers were collected.
 Is it possible to construct a 87% CI here? Yes or No?

 Explanation:

-this is not a SRS, but biased in favor of people with more than
I phore line (e.g., residential & cell stone) & biased against people
with culter ID (that often do not pick up calls when they can't
identify the culter) => this clearly does not resulting CI for all US citisens

• The sample of 787 U.S. citizens was obtained as a SRS from all U.S. citizens, but 780 of the responders said "Positive" (i.e., thought that the Bush Cabinet resignations will have positive impact on U.S. policy).

Is it possible to construct a 87% CI here? - Yes or No?

-although this is a SRS, it is
$$sample \% = \frac{780}{787} = 0.991 = 99.1\%$$
 Thick is too dose to 100%

The 787 answers come from the Quick Poll at the CNN Web page (http://www.cnn.com).
 Is it possible to construct a 87% CI here? - Yes or No?
 Explanation:

- this is not a SRS, but biased in favor of perle that have interest access, read the CAN Web page, and may have some strong opinion => this clearly does not result in a CI for all U.S. citizens

Statistics 1040, Section 008, Quiz 11 (20 Points)

Wednesday, April 16, 2008

Your Name:	
from: Chia 12, Fall 2005 & Hot 1040, Find, Guestion 1: Tests of Significance (20 Points)	2004, Austron II (Tolutions: > lourse Wil
Many companies are experimenting with "flex-time", which senteeism. One company employees have averaged 6.3 days company introduces "flex-time" and a year later a simple rances is selected. They average 5.5 days off work with a stand to determine if "flex-time" reduces absenteeism. Clearly standard hypotheses, calculate the appropriate test statistic, find the Palacian.	off work in the past. The dom sample of 100 employ-lard deviation of 2.9. Test the null and alternative
clusion. Show your work! 1. (2 Points) The test that has to be used in this question z-test.	-1 for each calculation error -2 if mill, alt snapped
1. (2 Points) The test that has to be used in this question (1) (2-test) / t-test. Circle your answer and explain briefly why you chose the question.	n is a
why 2-test? - sample rise \(\frac{1}{2} \)	
2. (3 Points) State the null and the alternative hypotheses and in terms of the box model.	-
1) Null: flex-time has so effect on absenteeism. Alternative: flex-time reduces absentee is m, i.	e, boxung < 6.3

Please turn over!

L.

3. (5 Points) Calculate the appropriate test statistic.

$$SE_{avg} = \frac{29}{100} = 0.29$$

$$2 = \frac{5.5 - 6.3}{6.29} = -2.76$$

4. (4 Points) Obtain the (approximate) P-value (use the appropriate table!).

54.

area between - 2.75 and 2.75: 39.40 %

5. (6 Points) State your conclusions in terms of rejecting (or not rejecting) the null hypothesis and in your own words. (If approriate, also speak of statistically significant or highly statistically significant.)

41 · reject the mill (P- value < 5%)

- · result is highly statistically significant (P-value < 1%) (2)

· flex-time reduces absentelism

l,

Please turn over!

Statistics 1040, Section 008, Quiz 12 (20 Points)

Wednesday, April 23, 2008

Your Name:			
	from: Hut 1040, Final, Fall 2007, Outon Question 1: Tests of Significance II (20 Points)		ni -> Course With Page)
	In a randomized, controlled, double-blind study parameters and Medical Association in October 2007, research weeks to try to determine whether the migraine of drinking. By the end of the study, 27 of the 183 drinking completely, while only 6 of the 188 people completely. Is this evidence that Topamax helps, of error? Clearly state the null and alternative hypestatistic, find the P-value, and state your conclusions.	chers followed 371 heavy didrug Topamax could help people in the Topamax gree in the placebo group had or could the result just be contheses, calculate the apprision.	rinkers for 14 them to quit toup had quit quit drinking due to chance propriate test
	Show your work! T. Toyannas your	-21	4 mill, alt mayer
_	2-sangle z-test: C; Control group ()	- 1 A	but ench calculation error
1	mill: Tand C help quit drinking at the same	ma, U	
2	alternative: Thelps quit drinking at a higher i.e., boxe 7% - boxe c% > 0% (1) i.e., boxe 7% - boxe c% > 0% (1) sample size T = 183 sample T% = 27 sample T% = 27 somple T% = 14.75% SD = \(\sqrt{0.1475.0.8525} \) = 0.355 SE sum T = \(\sqrt{183} \). 0.355 = 4.80 SE o/oT = \(\frac{4.80}{183} \). 100% = 2.62% (1)	mote 1 (1) 2) complesses C = 188 sumple C% = 6 = 3. SDc = V0.0319.0,968 SEsum c = V1827-0.176 = SE-%c = 2.41.100% =	7=0.176 (D 2.41 (D
	,. .	2+(1.28%)2 = 2,52%	
	Z= 14.75%-3.15 2.32%	$\frac{9\%}{2} = 3.96$	(1)
3,	, area between - 3.95 and 3.95: 95.932	2%	
•	p-value: area abare 3.95: \\ \begin{area between - 3.95 and 3.95: \\ 95.95.952 \end{area between - 3.95 and 3.95: \\ \begin{area abare 3.95 = \frac{100\% - 99}{2} \\ \end{area between - 3.95 and 3.95 = \frac{100\% - 99}{2} \\ area between -	992% =0.004% Please	e turn over!
ł	o result is highly state significant () Thelps quit drinking at a higher rate	(12)	
	. Thelps quit drinking at a higher rate	e (I)	