Statistics 1040, Section 008, Quiz 1 (20 Points)
Friday, January 11, 2008

Your Name: \qquad
from: FPP, Chapter, Review Eseerise 4 \& Quiz 1, Opting 2005 s.bring 2006, Question 1 Question 1: Controlled Experiments/Observational Studies I (13 Points)
(Solutions: \rightarrow Cure Web Page)
The Public Health Service studied the effects of smoking on health, in a large sample of representative households. For men and for women in each age group, those who never smoked were on average somewhat healthier than the current smokers, but the current smokers were on average much healthier than those who had recently stopped smoking.

- (6 Points) Why did they study men and women and the different age groups separately?

They studied the groups separately to eliminate the effects of the $\frac{\text { confounding factors of age and gender." }}{(4)}$

- ($\mathbf{7}$ Points) The lesson seems to be that you shouldn't start smoking, but once you've started, don't stop. Comment briefly.

Shat is not an appropriate condusion because there are
confounding factors. For esceample, these unto recently stopped
smoking may hare dore so an doctor's orders, because they had severe health problems.

Please turn over!

From: FPP, P10.11, "Yanmang" \& Quiz 1, Upping 2005 \& Spring 2006, Ouetion 2
 Question 2: Controlled Experiments/Observational Studies II (7 Points)

Fill the gaps in the following statements using the most appropriate words from the list below:

Statisticians want to know the effect of a treatment [or vacane] (like the Salk vaccine) on a response (like getting polio). To find out, they compare the responses of a treatment group (1) with a control group (1).

To make sure that the treatment group is like the control group, investigators put subjects (1) into the treatment or the control group at radom (1).
Whenever possible, the control group is given a placelo (1), which is neutral but resembles the treatment.

In a doulle-Clind (1) experiment, the subjects do not know whether they are in the treatment or in the control group; neither do those who evaluate the responses.
\checkmark placebo
\checkmark double-blind
\checkmark treatment group
observational study
\checkmark random
single-blind
($\checkmark \mid$ vaccine
confounding factor
objects
control group
controlled experiment
\checkmark subjects
polio
\checkmark treatment

Statistics 1040, Section 008, Quiz 2 (20 Points)

Friday, January 18, 2008

Your Name: \qquad
from: FPP, Chapter 3, Review Exercise 2 Question 1: Histograms (20 Points)
(Ychutions: \rightarrow Worklouk)

The age distribution of people in the U.S. in 2004 is shown below.

Age	Percent of population	Width	Height
$0-5$	7	5	$7 / 5=1.4$
$5-15$	14	0	$14 / 10=1.4$
$15-20$	7	5	$7 / 5=1.4$
$20-25$	7	5	$7 / 5=1.4$
$25-30$	7	5	$7 / 5=1.4$
$30-35$	7	5	$7 / 5=1.4$
$35-45$	15	10	$15 / 10=1.5$
$45-55$	14	10	$14 / 10=1.4$
$55-65$	10	10	$10 / 10=1.0$
$65-7585$	6	10	$6 / 10=0.6$
75 and oyer	6	10	$6 / 10=0.6$

1. (12 Points) Draw a histogram for these data on the graph paper provided. (The class intervals include the left endpoint, not the right; for instance, on the second line of the table, 14% of the people were age 5 years or more but had not yet turned 15 . The interval " 75 and over" can be ended at 85 . Men and women are combined in the data.) Make sure to label the axes.

2. (2 Points) Are there more children age 1 or elders age 71 ? Circle your answer.

$$
\begin{array}{r}
\rightarrow \text { age 1: } 1.4 \% \\
\text { age 71: } 0.6 \%
\end{array}
$$

3. (2 Points) Are there more 21 -year-olds. or 61-year-olds? Circle your answer.

$$
\begin{array}{r}
\rightarrow \text { age 21: } 1.4 \% \\
\text { age 61: } 1.0 \%
\end{array}
$$

4. (2 Points) Are there more people age 0-4) or 65-69? Circle your answer.

$$
\begin{aligned}
\rightarrow \text { age } 0-4: & 4 \cdot 1.4 \%=5.6 \% \\
\text { age } 65-69: & 4 \cdot 0.6 \%=2.4 \%
\end{aligned}
$$

5. (2 Points) The percentage of people age 35 and over is around $25 \%(50 \%$, or 75% ? Circle your answer.
sum up gereintugs up to age 35:

$$
\begin{aligned}
& 7 \%+14 \%+7 \%+7 \%+7 \%+7 \%=49 \% \\
& \text { therefore, "age } 35 \text { and over" }=100 \%-49 \%=51 \% \text { (closest to } 50 \% \text {) } \\
& \text { earelumations weren't reanioal!] }
\end{aligned}
$$ [NEt: eaplantiors wern't required!]

Statistics 1040, Section 008, Quiz 3 (20 Points)

Friday, January 25, 2008

Your Name: \qquad
from: Quiz 3, Upping 2006, Oustion 1
(Solutions: \rightarrow lours Wis Page)

Question 1: Measures of Center and Spread I (14 Points)

Below are the temperatures (in degrees Celsius) for five locations in Utah on Tuesday, January 20,2004 , at 9 pm SMT, as found on www. wunderground.com:

City	Temperature	
Bryce Canyon	-15	
Logan	-14	
Ogden	-12	
Str each calculation error		
Salt George	5	

Show your work!

1. (5 Points) Find the average temperature in degrees Celsius for these locations in Utah.

$$
\operatorname{avg}=\frac{(-15)+(-14)+(-12)+5+(-4)}{5}=\frac{-40^{3}}{5}=-8^{\circ} \mathrm{c}
$$

2. (3 Points) Find the median temperature in degrees Celsius for these locations 'in Utah.

$$
\begin{array}{r}
\text { sorted list: }-15 \quad-14 \quad-12-4 \quad 5 \tag{3}\\
\text { median }=-12^{\circ} \mathrm{C}
\end{array}
$$

3. (6 Points) Find the standard deviation of the temperatures for these locations in Utah.

$$
\begin{align*}
& \text {) } a v y=-8 \quad \text { (1) } \tag{1}\\
& \text { 2) }-15-(-8)=-7 \\
& \text { 3) }(-7)^{2}=49 \\
& \begin{array}{l}
4, \frac{49+36+16+169+16}{5}=\frac{286}{5}=57.2 \\
\text { 5) } S D=\sqrt{57.2}=7.56^{\circ} \mathrm{E}
\end{array} \\
& -14-(-8)=-6 \\
& -12-(-8)=-4 \\
& (-6)^{2}=36 \\
& (-4)^{2}=16 \\
& \text { 5) } S D=\sqrt{57.2}=\frac{7.56^{\circ} \mathrm{C}}{\text { Prese turn over! }} \\
& -4-(-8)=4 \\
& 13^{2}=169 \\
& 4^{2}=\left.16(1)\right|^{1}
\end{align*}
$$

from: Quiz 3, Irving 2006, Question 2
(Solutions: \rightarrow Count Wib-Page)
Question 2: Measures of Center and Spread II (6 Points)
To answer the questions below, you need to apply your knowledge about average, median, and standard deviation. No calculation is needed!

1. (3 Points) If the St. George temperature (the only positive value) is removed from the list, what will happen to the average and median? Choose the most appropriate answer and explain briefly:
(2)
(a) The average will change more than the median;
(b) The median will change more than the average;
(c) Both average and median will stay exactly the same.

Explanation: (1)
+5 is a very large value. we hare seen in class how such a large value pulls

2. (3 Points) If the St. George temperature (the only positive value) is removed from $(-12 \not x-13)$.
the list, what will happen to the standard deviation? Choose the most appropriate answer and explain briefly:
(a) The SD will become bigger;
2) (b) The SD will become smaller;
(c) The SD will become negative;
(d) The SD will not change at all.

Explanation:
The SD describes the spread of the data. If the largest value is removed, the spread can only become smaller (from 7.56 to 4.32).
The SD is never negative (and the SD is \mathcal{O} only if all numbersare eseactly the same - meaning there is no spread).
Formulas:

$$
\operatorname{avg}=\frac{\text { sum of all numbers }}{\text { how many numbers }}
$$

$$
\mathrm{SD}=\sqrt{\text { average of }\left[(\text { deviations from avg })^{2}\right]}
$$

Statistics 1040, Section 008, Quiz 4 (20 Points)

Friday, January 31, 2008
February 1 ,

$$
\begin{aligned}
& \text { Your Name: } \\
& \text { from: Miltorm 1, Ipwing 2005, Question 1 } \\
& \text { Question 1: Normal Approximation for Data (20 Points) }
\end{aligned}
$$

The Graduate Record Examination (GRE) is a test taken by college students who intend to pursue a graduate degree in the United States. For around 146,000 non-US citizens who took the General GRE Test in 2001-02, the mean for the quantitative ability parton of the exam was 700 and the standard deviation was 120 . We can assume that the histogram follows a normal curve. Show your work!

- (7 Points) The percentage of non-US citizens who scored more than 670 on the \angle GRE test is roughly 59.87%.

$$
\begin{equation*}
\text { (1) s.u: } \frac{670-700}{120}=-0.25 \mathrm{su} \text {. } \tag{3}
\end{equation*}
$$

670700
-0.2500 .25 s.4. (2) area from -0.25 to $0.25: 19.74 \%$ (2) (3)

$$
19.74 \%
$$

$$
\text { (3) area allure }-0.25: \frac{19.74 \%}{2}+50 \%=9.87 \%+50 \%=59.87 \% \text { (2) }
$$

- (7 Points) The percentage of non-US citizens who scored between 340 and 580 is about 15.73%.

- (6 Points) In order to be among the top 15% of all non-US citizens, a student must

(1) area from - 1.05 to $\frac{1.05}{(2)}: 70.63 \%$ (closest to 70%)
(2) original units:
\qquad .

$$
1.05 \cdot 120+700=126+700=826
$$

Please turn over!

Statistics 1040, Section 008, Quiz 5 (20 Points)

Friday, February 8, 2008

Your Name: \qquad
from) Quire S, Fall 2007, Unetion I
Question 1: Measurement Error (7 Points)
(Solutions: \rightarrow Courswib Page)

You send a yardstick to a local laboratory for calibration, asking that the procedure be repeated three times. They report the following values:

$$
35.96 \text { inches } \quad 36.01 \text { inches } \quad 36.03 \text { inches }
$$

If you send the yardstick back for a fourth calibration, you would expect to get 36 inches, give or take
(4)
(c) .06 inches or so

Circle your answer and explain.

$$
\begin{aligned}
& \text { Circle your answer and explain. } \\
& a v y=\frac{35.56+36.01+36.03}{3}=36 \\
& S O=\sqrt{\frac{(35.96-36)^{2}+(36.01-36)^{2}+(36.03-36)^{2}}{3}} \approx 0.03=\text { "fire or take" (2) }
\end{aligned}
$$

$$
\text { Question 2: Correlation (7 Points) \&hom: Quiz 5, Foll 200 7, Question } 2 \text { (Solutions } \rightarrow \text { Course }
$$ A teaching assistant gives a quiz to his section. There are 10 questions on the quiz and no $W \boldsymbol{W} \boldsymbol{b}-\mathrm{Daga}_{\mathrm{ag}} \mid$

part credit is given. After grading the papers, the TA writes down for each student the number of questions the student got right and the number wrong. The average number of right answers is 6.4 with an SD of 2.0; the average number of wrong answers is 3.6 with the same SD of 2.0 .

The correlation coefficient between the number of right answers and the number of wrong answers is
(a) exactly 0
(b) -0.50
(c) +0.50
(d) -1.0 \quad (e) +1.0
(f) -2.0
(g) +2.0
(h) can't tell without the data

Circle your answer and explain.

Number wrong $=10$ Number right! W_{0}, all the writs on a sutler diagram (3) (for \#wrong vs. \# right) Please turn over! lie on a straight line which sloes down.

In a class experiment last week, we measured the length of a pencil (including the eraser) 13 times. The average length of our 13 measurements was 7.5 inches, with an SD of 0.07 inches. Recall that 1 inch $=2.54 \mathrm{~cm}$.

If we translate these results into cm , the average length will be 19.05 cm , with a standard deviation of $0,1778 \mathrm{~cm}$.

Be precise and report all digits from your calculator this time (egg., if your calculator shows 27.8835 , then report this number and do not report 28 instead).

Show your work!

$$
\begin{aligned}
& \arg (\text { in cm }): 75 \cdot 2.54=19.05 \mathrm{~cm} \\
& S D(\text { in cm })=0.07 \cdot 2.54=0.1778 \mathrm{~cm}
\end{aligned}
$$

Formulas:

$$
\begin{gathered}
\operatorname{avg}=\frac{\text { sum of all numbers }}{\text { how many numbers }} \\
\mathrm{SD}=\sqrt{\text { average of }\left[(\text { deviations from avg })^{2}\right]}
\end{gathered}
$$

Statistics 1040, Section 008, Quiz 6 (20 Points)

Friday, February 22, 2008

Your Name:
from: Midterm 1, Fall 2007, Question 4
\qquad

Question 1: Correlation / Regression (20 Points)
For 167 college students, the relationship between height and handspan size is summasized as follows:

Fill the blanks in the statements below and show all the work needed to obtain the $=17.1$ to 24.7 answers.

1. (4 Points) Six scatter diagrams are printed on the next page. Which of the scatter diagrams is the correct one for these data? Circle the correct letter below (No explanation is needed for this part!):
A (B)
D E F
[see figure for sosplamation - lat not reeled]
2. (6 Points) Using the summary statistics above, what is the regression estimate for handspan for a student who is 60 inches tall?
The answer is: 18.05 inches

$$
\begin{align*}
& s u_{x}=\frac{60-68}{4}=-2 \\
& s u_{y}=-2 \cdot 0.75=-1.5 \tag{2}\\
& y=-1.5 \cdot 1.9+20.9=18.05 \text { inches }
\end{align*}
$$

3. (6 Points) Find the r.m.s. error for your answer in the previous part.

4. (4 Points) What would the correlation coefficient be if we changed all the handspan measurements to centimeters? (There are 2.54 centimeters in an inch).
The answer is: $T=0.75$ (it non'A change!)

Eschude impossille tits,

Formulas:

$$
\text { r.m.s. error }=\sqrt{1-r^{2}} \times \mathrm{SD}_{y}
$$

Statistics 1040, Section 008, Quiz 7 (20 Points)
Friday, February 29, 2008

Your Name: \qquad
(Volutions:-) Coursewib-Pange)
from: Quiz 7, Imposing 2005, Question 1
Question 1: Chance/Probability I (15 Points)
In a box of 15 chocolates, 5 are mint, 3 are orange, 5 are caramel, and 2 are cherry. I choose two chocolates at random (without replacement!).
Show your work!

- I for each calculation error
(or no final result in $\%$)

1. (5 Points) What is the chance that the first is mint or orange?

The chance is \qquad 53.3%.
-4 if $\%>100 \%$ or $\%<0 \%$
frost mint: $\frac{5}{15}$ fist orange: $\frac{3}{15}$
\rangle mutually exechusire
first mint or orange: $\frac{5}{15(1)+(2)} \frac{3}{15(2)}=\frac{8}{15}=0.533=55.3 \%$
2. (5 Points) What is the chance that the first two are both orange?

The chance is \qquad 2.86 $\%$.
fist orvinge: $\frac{3}{15}$
second orange,
given first orange: $\frac{2}{14}$ multiplication rule
both orange: $\frac{3}{15(1)} \frac{2}{14(2)}=\frac{6}{210}=0.0286=2.86 \%$
3. (5 Points) What is the chance that the first is orange and the second is caramel?

The chance is \qquad 7.14 $\%$.
fins range: $\frac{3}{15}$
second caramel,
given first orange $\frac{5}{14}$
first orange and
second caramel: $\frac{3}{15} \frac{5}{14}=\frac{15}{210}=0.0714=7.14 \%$
(1) (2) (2)

Please turn over!

Aron: Quiz 7, Irving 2005, Question 2 \& FPP, Un ter 13, Review Exercise 7, P. 235 Question 2: Chance/Probability II (5 Points)

A coin is tossed six times. Two possible sequences of results are
(Volutions: \rightarrow Course Wab-Pange \& workbook)
(i) HT TH TH
(ii) H H H H H H
(The coin must land on H or T in the order given; $\mathrm{H}=$ heads, $\mathrm{T}=$ tails).

Which of the following is correct?

Circle your answer and explain:

1. Sequence (i) is more likely.
2. Sequence (ii) is more likely.
(3)
3. Both sequences are equally likely.

Every prisille string of H's and T's is equally likely.
In fact, there are $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{6}=64$ possible sequences of It's \& T's in size coin to oses. Thus, the chance for each of these sequences is $\frac{1}{64}=0.0156=1.56 \%$.

Note that this question did not ask whetter getting 3 H's is more or less likely than getting 6H'S. In fact, when we write down all possible sequences of H 's \& T 's in sis coin tosses, we will see that there are far more (different) sequences with 3 this than there are sequences with 6 H 's (just one!).

Statistics 1040, Section 008, Quiz 8 (20 Points)
Friday, March 7, 2008
from: Quin 7, Jall 2003
\& aniz 8, Fall 2004 , Ouiz 8, Ypring 2006
(Yoluhions: \rightarrow Cours Wiefluge)
Question 1: Box Models, EV, and SE (12 Points)
You are participating in a new game that consists of tossing a 10 -sided die, with sides numbered from 1 to 10 . The die is fair, i.e., it has the same chance of landing on any side. Every time the die shows a number that is a multiple of 3 (i.e., 3,6 , or 9) you win $\$ 3$, otherwise you lose $\$ 1$, except when the die lands on 10 , in which case you win (or lose) nothing (\$0). Assume you are tossing this die 200 times.
Show your work!

1. (3 Points) Find the box model.

$$
3 \times 31 \times 06 \times-1
$$

\# draus : 200
-1 for minuor mistake
-2 for major mistable (eog, 3, 6, 5in bra)
-1 if \#drans wot stided
2. (4 Points) Find the expected value of your gain/loss.

$$
\begin{aligned}
& \text { lose ary }=\frac{3 \cdot 3+1 \cdot 0+6 \cdot(-1)}{10}=\frac{3}{10}=0.3 \\
& \text { in } 2,8.3 .1 \\
& E V_{\text {sum }}=200 \cdot 0.3=60 \quad[\$] \\
& -1 \text { for lach calculation error } \\
& \text { - i for ench minor mistabe } \\
& \text { - } 2 \text { for lach major mistake } \\
& \text { (l-g.y stormising) }
\end{aligned}
$$

3. (5 Points) Find the standard error of your gain/loss.

$$
\begin{aligned}
\operatorname{lose} S D & =\sqrt{\frac{3 \cdot(3-0.3)^{2}+1 \cdot(0-0.3)^{2}+6 \cdot(-1-0.3)^{2}}{10}} \\
& =\sqrt{\frac{3 \cdot 2.7^{2}+\left(\cdot(-0.3)^{2}+6 \cdot\left(-(.3)^{2}\right.\right.}{10}} \\
& =\sqrt{\frac{3 \cdot 7.2^{9}+0.09+6 \cdot 1.69}{10}} \\
& =\sqrt{\frac{32.1}{10}}=\sqrt{3.21}=1.79
\end{aligned}
$$

Arm' FPP, P. 285, devient Excise $4 \quad[$ answers, \rightarrow Warklork!]
$\frac{\text { Question 2: Law of Averages (8 Points) }}{\text { \& Quiz 8, boring } 2006} \quad[\quad \rightarrow$ Curse Nib Page $]$
Circle your answer for each of the following four parts. You don't have to provide any explanations.

1. (2 Points) A die will be rolled some number of times, and you win $\$ 1$ if it shows an ace (\square) more than 20% of the time. [To win, you reed a large gerastage enroot, Which is better: 60 rolls or 600 rolls? and that is move likely in 60 sells.]
2. (2 Points) As in 1.), but you win the dollar if the percentage of aces is more than 15%.
Which is better: 60 rolls or 600 rolls?
[Non you want a smell percentage error.]
3. (2 Points) As in 1.), but you win the dollar if the percentage of aces is between 15% and 20%.
Which is better: 60 rolls or 600 rolls [Again-ygu want a mall percent rye dior.]
4. (2 Points) As in 1.), but you win the dollar if the percentage of aces is exactly $16 \frac{2}{3} \%$.
Which is better: 60 rolls or 600 rolls?
C Because to get iseastly tho eogeoted value means getting eseactly sens chance error, and that is more likely with der will.]

Formulas:

$$
\text { box average }=\frac{\text { sum of all numbers in box }}{\text { how many numbers in box }}
$$

$$
\text { box } \mathrm{SD}=\sqrt{\text { average of }\left[(\text { deviations from box average })^{2}\right]}
$$

$$
\begin{aligned}
& \mathrm{EV}_{\text {sum }}=\text { number of draws } \times \text { box average } \\
& \mathrm{SE}_{\text {sum }}=\sqrt{\text { number of draws }} \times \text { box } \mathrm{SD}
\end{aligned}
$$

Statistics 1040，Section 008，Quiz 9 （20 Points）
Friday，March 21， 2008 part 1.1 －l if slightly incorrect number of（10）10＇s in la re
Your Name：

Aram：Amis g，spring 2005，Oustion 1
Question 1：EV，SE，and Normal Curve（16 Points）
（Ydections：－Course wife sane）
-3 if lex contains nonetting
other then（1）

Suppose it is known that 10% of all people in Utah have a specific blood type．Suppose I take a random sample of 500 Utah residents ．．．Show your work！－1 of \＃draws singsong

1．（4 Points）Find the box model．

4 draws： 500

\＃draws： 500
\} 1 : ~ s p e c i f i c ~ l l o y d ~ t o y ~ r e ~ （we are interested in）
0：all other leal tyres

2．（6 Points）The expected number of Utah residents in this sample of 500 who have that specific blood type is 50
lose arg：fraction of［D＇s $=\frac{1}{10}=0.1$

$$
\begin{aligned}
& \operatorname{lore} D=\sqrt{\text { fraction }_{\text {of fraction }}^{\text {of }} \text { 回's }}=\sqrt{\frac{1}{10} \cdot \frac{9}{10}}=\frac{3}{10}=0.3 \\
& E V_{\text {sum }}=500 \cdot 0.1=50 \\
& S E_{\text {sam }}=\sqrt{500} \cdot 0.3=6.7
\end{aligned}
$$

3．（6 Points）The chance that fewer than 40 Utah residents in this sample have that blood type is about $\quad 6.68 \%$ ．

$-1.5 \quad 0 \quad$ S． 4.
－ 1 for cush caluilution ever
－ 1 for leach minot mistake
－ 2 for luck major mist ike or der missing

$$
\downarrow \int u_{i}: \frac{40-50}{6: 7}=-1.49 \approx-15
$$

－A A or cark calculation error
Please turn over！
-2 for incorrect curve pasanoten，i－e，angthang is e than EV and SE
－2 for incorrect sa．
-1 for incorrect Aullevalue
-1 for incorrect is sa under the cure
from: Quiz g_{i} Spring 2005, Weston 2
Question 2: Probability Histograms (4 Points)

Shown below are probability histograms for the sum of (a) 100 , (b) 400 , and (c) 900 draws from the box $99 \times 0 \quad 1 \times 1$. Which histogram is which? Explain briefly.

(i) goes with sum (a) 100
(ii) goes with sum (b) 400
(iii) goes with sum (c) 900

Explanation: The histograms get closer to the normal curve as the number of draws goes up.

Formulas:

$$
\begin{gathered}
\text { box average }=\frac{\text { sum of all numbers in box }}{\text { how many numbers in box }} \\
\text { box } \mathrm{SD}=\sqrt{\text { average of }\left[(\text { deviations from box average })^{2}\right]} \\
\mathrm{EV}_{\text {sum }}=\text { number of draws } \times \text { box average } \\
\mathrm{SE}_{\text {sum }}=\sqrt{\text { number of draws }} \times \text { box SD }
\end{gathered}
$$

Shortcut formulas for a box that contains only two different numbers:

$$
\begin{aligned}
\text { average } & =\frac{(\text { smaller } \times \text { how many })+(\text { bigger } \times \text { how many })}{\text { how many tickets in the box }} . \\
\mathrm{SD} & =(\text { bigger }- \text { smaller }) \times \sqrt{\text { fraction } \times{ }_{\text {bigger }}^{\text {fraction }}}
\end{aligned}
$$

Shortcut formulas for a box that contains only 0 's and 1 's:

$$
\begin{aligned}
\text { average } & =\frac{\text { number of } 1 \text { 's }}{\text { how many tickets in the box }} \\
\mathrm{SD} & =\sqrt{\begin{array}{l}
\text { fraction } \\
\text { of } 1 \text { 's } \times \text { fraction } \\
\text { of } 0 \text { 's }
\end{array}}
\end{aligned}
$$

Statistics 1040, Section 008, Quiz 10 (20 Points)
Wednesday, April 9, 2008

Your Name: \qquad
from: Uni $10, F_{2} l 2004 \& O_{\text {Lis }} 10$, Poring 2006

Question 1: Confidence Intervals (20 Points)
Political events in the Fall of 2004 were in focus of many surveys and polls nationwide. With four members of the Bush Cabinet resigning within a few days in Fall 2004, a natural concern for every U.S. citizen at that time was: Will the Bush Cabinet resignations have a positive or negative impact on U.S. policy?

This question was asked to a sample of 787 U.S. citizens: 299 of them answered "Positive".

1. (14 Points) Construct a 87% confidence interval for the percentage of all U.S. citizens who think that the Bush Cabinet resignations will have a positive impact on U.S. policy.
Show your work.
1: Positive
box unknown: $\quad 2 \times 11 \quad 2 \times 10$
0: Negative
\# draws: 787

2. (6 Points) For each of the following situations, explain why or why not it would be possible to constuct a 87% confidence interval for the percentage of all U.S. citizens who think that the Bush Cabinet resignations will have positive impact on U.S. policy. Please do not construct the actual confidence interval - just answer each question with Yes or No and provide a very brief explanation.

- The sample of 787 U.S. citizens was obtained by using a computer to randomly generate a sufficent number of valid telephone numbers (including area code) and calling these numbers until 787 valid answers were collected. Is it possible to construct a 87% CI here? - Yes or No? (1)
Explanation:
-this is rot a SRS, lit biased in favor of people with more than I phone line (e.g; residential \& cell tore) \& birsal against people with culler ID (that often do not rick ry calls when they can' A identify the inlier) \Rightarrow this clearly dues not result ina CI for all US citizens
- The sample of 787 U.S. citizens was obtained as a SRS from all U. S. citizens, but 780 of the responders said "Positive" (i.e., thought that the Bush Cabinet resignations will have positive impact on U.S. policy).
Is it possible to construct a 87% CI here? - Yes or No?
Explanation:
- although this is a SRS, it is

$$
\begin{equation*}
\text { sample } \%=\frac{780}{787}=0.991=99.1 \% \tag{1}
\end{equation*}
$$

which is too dose to 100%

- The 787 answers come from the Quick Poll at the CNN Web page (http://www.cnn.com).
Is it possible to construct a 87% CI here? - Yes or No?
Explanation:
- this is rot a SRS, lat biased in favor of people that have internet access, read the CNN Web page, and may hare some strong opinion \Rightarrow this clearly dues not result in a CI for all U.S. ätisens

Statistics 1040, Section 008, Quiz 11 (20 Points)

Wednesday, April 16, 2008

Your Name: \qquad
 Question 1: Tests of Significance (20 Points)

$$
(\text { Solutions: } \rightarrow \text { Cons Wiblage) }
$$

Many companies are experimenting with "flex-time", which is supposed to reduce absenteeism. One company employees have averaged 6.3 days off work in the past. The company introduces "flex-time" and a year later a simple random sample of 100 employees is selected. They average 5.5 days off work with a standard deviation of 2.9 . Test to determine if "flex-time" reduces absenteeism. Clearly state the null and alternative hypotheses, calculate the appropriate test statistic, find the P -value, and state your conelusion.
Show your work!

- 1 fer inch calluilition error
-2 if mill, alt smapeal
- 15 for incorrect test

1. (2 Points) The test that has to be used in this question is a
(1) z-test $/ \mathrm{t}$-test.

Circle your answer and explain briefly why you chose this particular test to answer the question.

2. (3 Points) State the null and the alternative hypotheses for this problem, in words and in terms of the box model.

1) Null: flea-time has vo affect on absenteeism, ie; loxang $=6.3$

Altimadive: Alex-line reduces absenteeism m, ill, boxing <6.3 (1)

Please turn over!
3. (5 Points) Calculate the appropriate test statistic.

$$
\begin{align*}
& 21 S E_{\text {sam }}=\sqrt{100} \cdot 2.9=10.2 .9=29 \text { (D) expected arg: } 6.3 \\
& S E_{\text {avg }}=\frac{29}{100}=0.29 \\
& Z=\frac{5.5-6.3}{0.29}=-2.76 \tag{2}
\end{align*}
$$

observed arg: 5.5
4. (4 Points) Obtain the (approximate) P -value (use the appropriate table!).

area hat ween - 2.75 and 2.75: 99.40\% (2)

$$
\begin{equation*}
\leadsto p \text {-rale: } \frac{100 \%-99,40 \%}{2}=0.3 \% \tag{2}
\end{equation*}
$$

5. (6 Points) State your conclusions in terms of rejecting (or not rejecting) the null heypothesis and in your own words. (If approriate, also speak of statistically significant or highly statistically significant.)
4) - reject the mull (P-value $<5 \%$)

- result is highly statistically significant $(P$-mule $<1 \%)$ (2)
- Plex-time reduces absenteciom
(2)

Please turn over!

Statistics 1040, Section 008, Quiz 12 (20 Points)
Wednesday, April 23, 2008

Your Name:
from: Hat 1040, Final, Fall 2007, Question 10
(Volutions \rightarrow Course wib-Paye)
Question 1: Tests of Significance II (20 Points)
In a randomized, controlled, double-blind study published in The Journal of the American Medical Association in October 2007, researchers followed 371 heavy drinkers for 14 weeks to try to determine whether the migraine drug Topamax could help them to quit drinking. By the end of the study, 27 of the 183 people in the Topamax group had quit drinking completely, while only 6 of the 188 people in the placebo group had quit drinking completely. Is this evidence that Topamax helps, or could the result just be due to chance error? Clearly state the null and alternative hypotheses, calculate the appropriate test statistic, find the P -value, and state your conclusion.
Show your work!
T: Toparmax gran

- 15 for incorrect test
- 2 if sill, alt soaped

2-sample z-test:
C. Continual group (placebo)

- 1 for inch caliallition error

If null: T and C help quit drinking at the sanembe, (D)

$$
\text { i.e., } \operatorname{lox}_{\mathrm{T}} \%-\operatorname{logex}_{c \%}=0 \%
$$

alternative: T helps quit drinking at a higher rate, (1)

$$
\text { i.e., bose } 7 \%-\operatorname{lox}_{c \%}>0 \% \text { (1/2) }
$$

21
$\frac{T}{183}$
sample size $T=\frac{27}{183}=14.75 \%$
sample $T \%=$
$S D_{T}=\sqrt{0.1475 \cdot 0.8525}=0.355$
$S E_{\text {sum T }}=\sqrt{183} \cdot 0.355=4.80$
$S E \% T=\frac{4.80}{183} \cdot 100 \%=2.62 \%$

$$
\begin{equation*}
S E_{\text {diff }}=\sqrt{(2.62 \%)^{2}+(1.28 \%)^{2}}=2,92 \% \tag{1}
\end{equation*}
$$

(1)
(1) $S D_{C}=\sqrt{0.0319 \cdot 0.9681}=0.176$
(1) SE sum $_{C}=\sqrt{188}-0.176=2.41$
(1) $S E_{\% C}=\frac{2.41}{188} \cdot 100 \%=1.28 \%$

$$
\begin{equation*}
z=\frac{14.75 \%-3.15 \%}{2.92 \%}=3.96 \tag{1}
\end{equation*}
$$

3, area bet wen - 3.95 and 3.95:99.992\%
$1 \frac{1}{2}$
P-value $=$ area above $3.95=\frac{100 \%-99992 \%}{2}=0.004 \%$ please turn over!
4 e eject the mull

- result is highly stat. sigmificurt (1)
- T helps quit drinking at a higher rate (1)

