Name: \qquad
Final Test, May 1, 1:30pm-3:20pm
$100 \rightarrow 400$
Show your work. The test is out of 100 points and you have 110 minutes to finish.
$8 \rightarrow 32$ 1. Does Aspartame Cause Cancer? Aspartame is an artificial sweetener found in thousands of products - sodas, chewing gum, dairy products and even many medicines. Some research has suggested that aspartame can cause lymphoma or leukemia in rats.
A recent study by the National Cancer Institute involved 340,045 men and 226,945 women, ages 50 to 69 . From surveys they filled out in 1995 and 1996 detailing food and beverage consumption, researchers calculated how much aspartame they consumed. Over the next five years, 2,106 developed cancers such as lymphoma or leukemia. No association was found between aspartame consumption and occurrence of these cancers.

8 (a) (2 points) Was the study a controlled experiment or an observational study? Why? There was no intervention. The suljiets decided themselves what to eat and to drink.
16 (b) (4 points) Suggest a possible confounding factor for this study and explain why your confounding factor might make you doubt their results.
(10) for 1 valid factor There might be various confounding factors, leg.
(6) for eseglanation

- race: some types of cancer are more frequent in one race than in - other races
- environment \& wok place: subjects may hare been exposed to other chemicals or pollute ants at hone or at their work place and these chemicals or pollutants may have contributed to their cancer
- genetics: certain genetic diseases may le asxviated with this bog pe of cancer

88 (c) (2 points) "It's very reassuring. It's a large study with a lot of power," said Richard Adamson, a senior science consultant to the American Beverage Association, the leading industry group. Does the large sample size prove that aspartame does not cause cancers such as lymphoma or leukemia? Explain.

 factors at a large scale.
$6-24$ 2. A randomized, controlled, double-blind study published in March, 2008 shows the well-known $6 \geqslant 24$ "placebo effect" works even better if the placebo costs more. In the study, volunteers were given an electric shock and took a pill. Volunteers in the treatment group were told it was an expensive painkiller, while those in the control group were told it was a discounted painkiller. In fact, all the pills were placebos, but 85% of the volunteers who thought they were getting an expensive painkiller said they felt less pain after taking it, compared to 61% of those who thought they were getting a discounted painkiller.
4 (a) (1 point) What is a placebo?
A placelo is a drug or vaccination (egg., a sugar pill or a salt water injection) that resembles the treatment, but has no mealical effect.
(2)
$[12$ (b) (3 points) Why is a placebo used in a controlled experiment?
IA is used such that the subjects' response will be related to the treat meat itself and not to the idea of the treatment.

88 (c) (2 points) What sort of a test would you use if you wanted to test whether the difference between the two percentages could be due to chance error? (Circle the correct answer)

- one-sample z-test
- one-sample t-test
- two-sample z-test
- Chi-square test
$4 \rightarrow 16$ 3. (4 points) In a flyer by Horizon Textbook Publishing, a customized textbook manufacturer, they cite Dr. Blount, Gaston College, as follows:'
"After 4 years with my Horizon customized textbook, I've witnessed an increase in both grade point averages and instructor evaluation scores. Thanks, Horizon!"

Assuming that his grade point averages and instructor evaluation scores really did increase, can we attribute the increase to the Horizon customized textbook? Yes / No? Circle your answer and explain, using the appropriate statistical terms. Provide two different reasons to
(8) justify your answer.
justify your answer. factors sud as:
(4) for each valid reason
(i) an imporred teaching style of the instructor after flaring taught the same
course for 4 years
(ii) a possible geneml increase in students' GPA (leg., after the university toughened its general admissions rubes).
Finally, (iii) are the observed improvements indeed statistically significant or could the observed improvements just be chance error?
4. (8 points) The following table summarizes the lengths of 24 male painted turtles. Class intervals include the left endpoint but not the right.

Length (mm)	Number of turtles

90 to 100
3
100 to 110
6
110 to 120
7
120 to 130
6
(4) 130 to 140
Count (or Frequency or Number)

Draw a histogram for the data, being careful to label the axes correctly.

$7-28$
5. (7 points) The length of female painted turtles follows the normal curve with an average of 136 mm and an SD of 21 mm . If the length of one of these turtles is at the 75th percentile, what is her length?

area lateen -0.65 and $0.65: 48.43 \%\left(\operatorname{dosec} t x_{0} 50 \%\right)$
original units: $0.65 \cdot 21+136=149,65 \mathrm{~mm}$
(10) $\left.\frac{\hat{2}}{2}(3) \frac{\hat{1}}{2}\right)$

- 2 for each calculation error
$6 \rightarrow 24$. The length and width of 24 male painted turtles have the following summary statistics:
X Length: average $=113 \mathrm{~mm} \quad \mathrm{SD}=12 \mathrm{~mm} \quad \mathrm{r}=0.95$
Y Width: average $=88 \mathrm{~mm} \quad \mathrm{SD}=7 \mathrm{~mm}$
The scatter-diagram is football-shaped.
20 (a) (5 points) Predict the width of a turtle that is 130 mm in length.

$$
\begin{aligned}
& \text { slope }=r \cdot \frac{S D_{y}}{S D x}=0.95 \cdot \frac{7}{12}=0.554 \\
& \text { intercept }=a y_{y}-\text { sloge }-\operatorname{avg} x=88-0.554 \cdot 113=25.4
\end{aligned}
$$

regression equation: $y=.25 .4+0.554 \cdot x$
width for 130 mm in length: $y=25.4+0.554 \cdot 130^{6}=97.42 \mathrm{~mm}$
14 (b) (1 point) What is the rms error for your prediction in part. ba)?

$$
\begin{aligned}
\text { rms error } & =\sqrt{1-r^{2}} \cdot \text { SOY } \\
& =\sqrt{1-0.95^{2}} \cdot 7=4=2.19 \mathrm{~mm}
\end{aligned}
$$

$9 \rightarrow 367$. A class of 26 fourth-graders has 14 boys and 12 girls. This class goes on a field trip. Two children are chosen at random to ride with the teacher.
[9] (a) (1 point) What is the chance the first child is a boy?
lot lay

$$
\frac{14}{26}(9)=0.538=53.8 \%
$$

8 (b) (2 points) What is the chance the second child is a boy?
2 nd \log

$$
\frac{14}{26}(8)=0.538=53.8 \%
$$

8 (c) (2 points) What is the chance both children are boys?
1 silly and 2 nd by

$$
\begin{aligned}
& \text { stroy and } 2 \text { and by y } \\
& \frac{14}{26} \text { (3) (2) } \frac{13}{25} \text { (3) }=\frac{182}{650}=0.280=28.0 \%
\end{aligned}
$$

8 (d) (2 points) What is the chance neither of the children are boys?
$=$ chance both are girls $=$ int girl and 2 nd girl

$$
\frac{12}{26}(3) \text { and } \frac{11}{25} \text { (3) }=\frac{132}{650}=0.203=20.3 \%
$$

8 (e) (2 points) What is the chance one of the children is a boy and the other is a girl?

$$
\begin{aligned}
& =1-\text { both logs }- \text { both girls } \\
& =\underbrace{1-0.280}_{(2)} \underbrace{-0.203}_{(3)}=0.517=51.7 \%
\end{aligned}
$$

$32-128$
8. German Internet Study This question relates to a study published in April 2008 at http://www.sevenoneinteractive.de/. This was a telephone survey in which 1,009 Germans were asked questions about how they used the internet at home.

48 (a) (12 points) One of the questions asked people how many Web sites they frequently revisited. For the 505 men in the study, the average was 9.4 with an SD of 8.3 . For the

2-sumple
z-test: 504 women in the study, the average was 6.4 with an SD of 6.0 . Is this evidence that the average for all German men is higher than the average for all German women, or could the result just be due to chance error? (Assume these are two independent simple random samples from all German men and women.)
-36 for income nt tons A
-4 if mill, alt swajzal
i. Clearly state the null and alternative hypotheses.

I/ wall: men \& women revisit on arg the same namblect Wibsites (3) ${ }^{-2}$ for each calculation error
ie., $\log ^{\arg } \mathrm{av}_{\mathrm{m}}-\operatorname{lox}^{\operatorname{ang}} w=0$ (1)
alternative: men revisit on alg move websites than women (3)

$$
\text { i.e., } \operatorname{loxe}^{\text {and }} m \text { - losing } w>0
$$

ii. Calculate the appropriate test statistic.

21

$$
\begin{align*}
& \text { Men (m) Women (w) } \\
& \text { sample rise } H=505 \\
& \text { sample size } W=504 \\
& \text { sample avg } M=9.4 \\
& \text { sample arg } W=6.4 \\
& \text { sample } S D M=8.3 \\
& \text { simple } \mathrm{SO}^{\prime} \mathrm{W}=6.0 \\
& S E_{\text {sum }_{M}}=\sqrt{505} \cdot 8.3=186.5 \text { (2) } \quad \text { SE san } W=\sqrt{504} \cdot 6.0=134.7 \tag{2}\\
& S E \operatorname{ovg}_{m}=\frac{1865}{505}=0.37 \\
& \text { (2) } S E \operatorname{ang}_{w}=\frac{134.7}{504}=0.27 \tag{2}\\
& S E_{\text {diff }}=\sqrt{0} \tag{4}\\
& z=\frac{9.4-6.4}{0.46}=6.5 \tag{4}
\end{align*}
$$

area between -6.5 and 6.5: almost 100\% (4)
iii. Find the P -value.
3)
 area above 6.5 : about $0 \%=p$-value
06.5 s.u.
iv. Do you reject the null hypothesis? Explain why or why not. 4) - reject the null (4) $(P$-value $<5 \%)$ (4)
v. State your conclusions.

- result is highly stat. significant (4) (P value $<1 \%$)
- men revisit on arg more $w i b$ sites than women
- 30 for incorrect test
-4 if mull, alt owapsed
40 (b) (10 points) According to an earlier study, German men visit an average bor 20 new Web . sites in a typical month. For the 505 men in the new study, the average number of new Z-Ant: Web sites visited in a typical month was 20.8 with an SD of 21.6. Does the new study justify the following newspaper headline: "New study shows that German men visit an sample rise average of more than 20 new Web sites in a typical month."? (Assume this is a simple >30 random sample from all German men.)
i. Clearly state the null and alternative hypotheses. If mull: men visitor avg 20 new Nib sites per moth, (3)

$$
\begin{equation*}
\text { ie., box arg }=20 \text { (i) } \tag{1}
\end{equation*}
$$

alternative: men visit on avg mare than 20 mew wis sites per month, (3)
ice., bore avg >20
ii. Calculate the appropriate test statistic.

21 observed (avg) $=20.8$
expected (arg) $=20$

$$
\begin{align*}
& S D=21.6 \\
& S E_{\text {sam }}=\sqrt{505} \cdot 21.6=485.4 \tag{4}\\
& S E_{\text {aug }}=\frac{485.4}{505}=0.96 \tag{4}\\
& z=\frac{20.8-20}{0.96}=0.83 \tag{4}
\end{align*}
$$

iii. Find the P -value.
3)

area between - 0.85 and 0.85: 60.47%

$$
\begin{equation*}
\text { area above } 0.85: \frac{100 \%-66.47 \%}{2}=19.77 \%=p \text {-value } \tag{4}
\end{equation*}
$$

00.83 sin.
iv. Do you reject the null hypothesis? Explain why or why not.

4 . do not reject the null (4) (P-value $>5 \%)$ (4)
v. State your conclusions.

- men visit on avg 20 new Nib sites per month, (4) ie., the newspaper headline is not justified

32 (c) (8 points) Among the 350 people in this study aged 20 to 29 years, 12.6% visit more than 50 new Web sites in a typical month. Find an 85% confidence interval for the percentage of all Germans aged 20 to 29 years who visit more than 50 new Web sites in a typical month. (Assume this is a simple random sample of all Germans aged 20 to 29 years.)

$$
\begin{align*}
& \text { sample } \%=12.6 \% \\
& S D=\sqrt{0.126 \cdot 0.874}=0.332 \tag{1}\\
& S E_{\text {sum }}=\sqrt{350} \cdot 0.332=6.21 \tag{4}\\
& S E \%=\frac{6.21}{350} \cdot 100 \%=1.77 \% \tag{4}\\
& 85 \% \text { (4) } C I=12.6 \%+1.45 \% 1.77 \%=\frac{10.03 \%}{2} \text { tor each culculent } \frac{15.17 \%}{(2)}
\end{align*}
$$

- 2 for cark culcuabition error

8 (d) (2 points) Suppose we found out that the samples really came from an online questionnaire exclusively available to people who visited the German version of "myspace" (myspace.de). Which, if any, of the results from the previous three questions are still valid? Explain.
(5) None of these results would be valid arg longer as we wo longer are
dealing with a SRS of all Germans. myspace. de most likely favors a certain group of internat users. Moreover, a survey postal on a web site results in a convenience sample where not t likely people with particular opinions will respond, leg; peoplewto spend a lot of time on the web.
$8 \rightarrow 32$ 9. (8 points) For Utah men aged 50-80, the average number of hours of hard physical activity a week is 14 hours, with an SD of 15 hours. I plan to take a simple random sample of 225 Utah men aged 50-80. What is the chance that the average number of hours of hard physical activity a week for the men in the sample lies between 12.5 and 15.5 ?

$$
\begin{align*}
& E V_{\text {avg }}=14 \\
& S D=15 \\
& S E_{\text {sam }}=\sqrt{225} \cdot 15=225 \tag{6}\\
& S E_{\text {avg }}=\frac{225}{225}=1.0 \tag{6}
\end{align*}
$$

-2 for lack ialculbition error

$$
\begin{equation*}
\frac{\text { Plies }}{12.51415 .5} \quad \text { s.4.: } \frac{12.5-14}{1.0}=-1.5(6) \frac{15.5-14}{1.0}=1.5 \tag{6}
\end{equation*}
$$

$-1.5 \quad 0 \quad 1.5 \mathrm{su}$.
area between $-1.50 \operatorname{and} 1.50=86.64 \%$

$$
\begin{array}{lll}
\text { (1) }=\frac{559.445}{1236}=201 & \text { (2) }=\frac{559 \cdot 588}{1236}=266 & \text { (3) }=559-201-266=92 \\
\text { (9) }=445-201=244 & \text { (5) }=588-266=322 & \text { (6) }=203-92=111
\end{array}
$$

$$
12-\sqrt{48]^{0}}
$$

indyendence:
(12 points) In one anally is of the data from the Utah Study of Nutrition and Bone Health they looked at the relationship between BSM1 vitamin D receptor genotype and whether or not a person has a hip fracture. The data for the women in the study are summarized in the table below. Assume this is a simple random sample from the population.

ob. count	Genotype			Total
Hip Fracture? Yes	183	281	95	559
	No	262	307	108
O	67			
Total	445	588	203	1236
	(4) for Totals			

We are interested in whether or not genotype and hip fracture are independent in this popecation.
(a) Clearly state the null and alternative hypotheses.

If mull: genotype ard hip fractures are indyendent,
(3)
-36 f-rincirrect $b=A$
-4 if mull alt srappal
-2 for each calablation error
i.e., doses are identical
(1)
alter native: genotype and hip fractures are not independents, (3)
isl., at least are lose is different (I)
(b) Calculate the appropriate test statistic.

21 expected: \rightarrow see above

$$
\begin{align*}
x^{2}= & \text { sum of } \frac{\left(b_{s}-e_{s x p}\right)^{2}}{l_{s p}} \\
= & \frac{(183-201)^{2}}{201}+\frac{(281-266)^{2}}{266}+\frac{(95-92)^{2}}{92} \\
& +\frac{(262-244)^{2}}{244}+\frac{(307-322)^{2}}{322}+\frac{(108-111)^{2}}{111} \\
= & 4.66 \tag{4}
\end{align*}
$$

(c) Find the P -value.
3) $d f=(2-1) \cdot(3-1)=2$
$x^{2}=4.66$ is between 4.60 and 5.99
R-value is between 10% and 5%
(d) Do you reject the null hypothesis? Explain why or why not.

41 - do mot reject the mill (4) $(p$-value $>5 \%)$ (4)
(e) State your conclusions

- genotype and his fractures are independent (4)

