Statistics 1040, Section 009, Quiz 1 (20 Points)
Friday, January 13, 2006

Your Name: \qquad
from: FPP, p. 25, Reverso Exercise 4
\& Quiz 1, Aping 2005
Question 1: Controlled Experiments/Observational Studies I (13 Points)
The Public Health Service studied the effects of smoking on health, in a large sample of representative households. For men and for women in each age group, those who never smoked were on average somewhat healthier than the current smokers, but the current smokers were on average much healthier than those who had recently stopped smoking.

- (6 Points) Why did they study men and women and the different age groups separately?

Warlock:
"They studied the grays separately to eliminate the effects of the

- (7 Points) The lesson seems to be that you shouldn't start smoking, but once you've started, don't stop. Comment briefly.

Worklouk:
(3)

confounding factors. For example, those who recently stopped smoking may hare dore so on doctor's orders, because they had severe health problems."

$$
\text { from: FPP, p. 10-11, "Yr.mmary" \& Quiz 1, Ip ring } 2005
$$

Question 2: Controlled Experiments/Observational Studies II (7 Points)
Fill the gaps in the following statements using the most appropriate words from the list below:
Statisticians want to know the effect of a treat mend Cor vaccine] (like the Salk vaccine) on a response (like getting polio). To find out, they compare the responses of a treatment group (1) with a control group (1).

To make sure that the treatment group is like the control group, investigators put subjects \qquad
Whenever possible, the control group is given a placebo (1), which is neutral but resembles the treatment.
In a double-llind (1) experiment, the subjects do not know whether they are in the treatment or in the control group; neither do those who evaluate the responses.

\checkmark placebo
\checkmark double-blind
\checkmark treatment group
observational study
random
single-blind
(\checkmark) vaccine
confounding factor
objects
\checkmark control group
controlled experiment
\checkmark subjects
polio
\checkmark treatment

Statistics 1040, Section 009, Quiz 2 (20 Points)
Friday, January 20, 2006

Your Name: \qquad
from: Anis 1, Spring 2002 \& Quiz 2, Fall 2004
Question 1: Histograms I (12 Points)
The histogram below shows the age distribution of Stat 3000, Section 001, students for the Spring 2002 semester. Unfortunately, the labels on the vertical axis have been deleted. However, the instructor recalls that there have been about 25% of students who were at least 21 but less than 23 years old. Try to help the instructor to fill in some of the missing percentages.

Age distribution of STAT 3000_001 students in Spring 2002

-3 if a percentage makes no sense, ie., is out side the "acceptable andes"
(4) 1. What approximate percentage of students were at least 25 but less than 27 years old? amber: about 12% acceptable answers: anything lotweln 10% and 13% explanation (mot required) : the hight of the hor from 25 五 27 is slightly lease than $1 / 2$ of the hight of the der from 21 to 23, so slightly les th on $1 / 2 \cdot 25 \%$
(4) 2. What approximate percentage of students were younger than 21 years of age? answer: about 30% acceptable answers iangtheng between 26% and 40%
eseglanation (rot requires): stack the 17 to 19 bar on tor of the 19 to 21 lar and this gets higher than the 21 tr 23 lor ; the esetmen hight represents ablaut 5\%
(4)3. What approximate percentage of students were at least 29 years old?
answer: about 8% acceptullionswers any sing between, 5% end 11%
 is boon them the 25 to 27 lar (otic is about 12%)
from: FPP, p. 41, Exercise yet C, Esterase 3 \& Luis 2, Fall 2004
Question 2: Histograms II (8 Points)
[Answers: \rightarrow Test look !]
An investigator draws a histogram for some height data, using the metric system. She is working in centimeters (cm). The vertical axis shows density, and the top of the vertical axis is 10 percent per cm . Now she wants to convert to millimeters (mm). There are 10 millimeters to the centimeter. On the horizontal axis, she has to change 175 cm to 1,750 (2) mm , and 200 cm to $2,000 \quad$ (2 mm . On the vertical axis, she has to change 10 percent per cm to $\quad 1$ percent per mm , and 5 percent per cm to 0.5 (2) percent per mm .

Texetlook (page A-46),
"The idea on density: If you spread 10 percent evenly over
$1 \mathrm{~cm}=10 \mathrm{~mm}$, Here is 1 percent in each mm, that is, I perant per mm."

Statistics 1040, Section 009, Quiz 3 (20 Points)

Friday, January 27, 2006

Your Name:

\qquad

Question 1: Measures of Center and Spread I (14 Points)
Below are the temperatures (in degrees Celsius) for five locations in Utah on Tuesday, January 20, 2004, at 9pm SMT, as found on www. wunderground.com:

| City | Temperature |
| :---: | :---: | :---: |
| Bryce Canyon | -15 |
| Logan | -14 |
| Ogden | -12 |
| St. George | 5 |
| far lead calculation error | |
| Lake City | -4 |

Show your work!

1. (5 Points) Find the average temperature in degrees Celsius for these locations in Utah.
(3)

$$
a v g=\frac{(-15)+(-14)+(-12)+5+(-4)}{5}=\frac{-40^{\circ}}{5}=-8^{\circ} c
$$

2. (3 Points) Find the median temperature in degrees Celsius for these locations 'in Utah.
sorted list: $\begin{array}{ccccc}-15 & -14 & -12 & -4 & 5\end{array}$
median $=-12^{\circ} \mathrm{C}$
3. (6 Points) Find the standard deviation of the temperatures for these locations in Utah.

$$
\begin{aligned}
& \text { in Utah. } \\
& \text { arg }=-8 \\
& 21-15-(-8)=-7 \\
&-14-(-8)=-6 \\
&-12-(-8)=-4 \\
& 5-(-8)=13 \\
&-4-(-8)=4
\end{aligned}
$$

$$
\text { 3) }(-7)^{2}=49
$$

$$
(-6)^{2}=36
$$

$$
(-4)^{2}=16
$$

$$
\begin{aligned}
& \text { 4, } \frac{49+36+16+169+16}{5}=\frac{286}{5}=57.2 \\
& \text { 5) SD } S=\sqrt{57.2}=\frac{7.56^{\circ} \mathrm{C}}{2}
\end{aligned}
$$

$$
13^{2}=169
$$

$$
4^{2}=160 \mid 1
$$

Question 2: Measures of Center and Spread II (6 Points)

To answer the questions below, you need to apply your knowledge about average, median, and standard deviation. No calculation is needed!

1. (3 Points) If the St. George temperature (the only positive value) is removed from the list, what will happen to the average and median? Choose the most appropriate answer and explain briefly:
(2) (a) The average will change more than the median;
(b) The median will change more than the average;
(c) Both average and median will stay exactly the same
 wi hare seen in class how such a large value pulls

2. (3 Points) If the St George temperature (the only positive while the medionony changes a bit
3. (3 Points) If the St. George temperature (the only positive value) is removed from $(-12 x-13)$.
the list, what will happen to the standard deviation? Choose the most appropriate answer and explain briefly:
(a) The SD will become bigger;
(2) (b) The SD will become smaller;
(c) The SD will become negative;
(d) The SD will not change at all.

Explanation:
"The SO decribles the spread of the data. If the largest value is removed, the spread conorly become smaller (from 7.56 to 4.32). The SD is never negative (and the SD is 0 only if all mumbersare eseactly the same - meaning there is no spread).
Formulas:

$$
\begin{gathered}
\operatorname{avg}=\frac{\text { sum of all numbers }}{\text { how many numbers }} \\
\mathrm{SD}=\sqrt{\text { average of }\left[(\text { deviations from avg })^{2}\right]}
\end{gathered}
$$

Statistics 1040, Section 009, Quiz 4 (20 Points)

Friday, February 3, 2006

Your Name:
Prom: Unis 4, Yapping 2005
Question 1: Normal Approximation for Data (20 Points)
-2 foreman culcabiton error
+2 for cornet gash (and nothing base)
The Graduate Record Examination (GRE) is a test taken by college students who intend to pursue a graduate degree in the United States. For around 428,000 examinees who took the General GRE Test in 2001-02, the mean for the verbal ability portion of the exam was around 470 and the standard deviation was around 125 (http://ftp.ets.org/pub/gre/994950.pdf).
Show your work!

- (7 Points) The percentage of examinees who scored more than 670 on the GRE whit
test is roughly $5.48 \% \%$.
$\frac{670-470}{125}=1.6$ s.4. (3)
(2) area between -1.6 and 1.6
(3) area alone $1.6: \frac{100 \%-89,04 \%}{2}=\frac{10.96 \%}{2}=5.48 \%$
- (7 Points) The percentage of examinees who scored between 320 and 570 is revaintuge? about 67.31%.
(i) Convert 320 amd 570 into stander units:
$-\frac{320-470}{125}=-1.2$ s.4. (1) $\frac{570-470}{125}=0.8 \mathrm{s.4}$.

(2) area between -1.2 and 1.2: 76.99% (1)(3) area between -12 amor 0.8 : area between $-0.8 \operatorname{and} 0.8: 57.63 \%$ (1)

$$
\begin{equation*}
\frac{76.99 \%}{2}+\frac{57.63 \%}{2}=67.31 \% \tag{3}
\end{equation*}
$$

- (6 Points) In order to be among the top 10%, a student must have obtained a minimum GRE score of about 632.5
 $z=1.30$ (2) gives 80.64%)
(2) Transfer into original units:

$$
\begin{equation*}
1.30 \cdot 125+470=632.5 \tag{2}
\end{equation*}
$$

Please turn over!

Statistics 1040, Section 009, Quiz 5 (20 Points)

Friday, February 10, 2006

Your Name:

\qquad

Question 1: Change Of Scale (10 Points)

In a class experiment last week, we measured the length of a pencil (including the eraser) nine times. After adjustment of one outlier, all values looked reasonable. The average length of our nine measurements was 7.5 inches, with an SD of 0.14 inches. Recall that 1 inch $=2.54 \mathrm{~cm}$.

19.05 cm , with a If we translate these results into cm , the average length will be \qquad standard deviation of 0.3556 cm .

Be precise and report all digits from your calculator this time (e.g., if your calculator shows 27.8835 , then report this number and do not report 28 instead).
Show your work! $\operatorname{avg}($ in am $): 7.5 \cdot 2.54=19.05 \mathrm{~cm}$

$$
\text { SD }(\text { in } \mathrm{km}): 0.14 \cdot 2.54^{(1)}=0.3556 \mathrm{~cm}
$$

from: FPP, P. 138, Revere Exercise II [Solution, \rightarrow Workbook!] Question 2: Correlation (10 Points)

A teaching assistant gives a quiz to his section. There are 10 questions on the quiz and no part credit is given. After grading the papers, the TA writes down for each student the number of questions the student got right and the number wrong. The average number of right answers is 6.4 with an SD of 2.0; the average number of wrong answers is 3.6 with the same SD of 2.0 .

The correlation coefficient is
(7)
(d) (a) exactly 0
(b) -0.50
(c) +0.50
(d) $-1.0 \quad$ (e) +1.0
(f) -2.0
(g) +2.0
(h) can't tell without the data

Circle your answer and explain.
The number of cored answers and the number of incorned answers (3) add up to 10 !

Statistics 1040, Section 009, Quiz 6 (20 Points)

Friday, February 24, 2006

Your Name:

\qquad
Aram: Anis 6, Mooring 2005

Question 1: The Regression Line (20 Points)

In a study, reading comprehension is tested for a large number of third grade students, once at the beginning of the school year and once at the end of the school year. During the school year, the students work on reading comprehension skills. The following results are obtained:
X beginning-of-year: average score $=75 ; \quad \mathrm{SD}=15$;
in all parts:

- 2 for each calculation error
-2 for inch in cornet value used

The scatterplot of the data shows a football-shaped cloud. Show your work!

1. (10 Points) Find the equation of the regression line for predicting the end-of-year score from the beginning-of-year score.
doge $=r \cdot \frac{S D_{y}}{S D x}=0.6 \cdot \frac{17}{15}=0.68$
-2 if only port of the equation
(ecg. $29+0.68 x)$
-2 if ont senifyeing $x \& y$
intercept $=a v g_{y}-$ sloe. $\operatorname{avg}_{x}=80-0.68 .75=80-51=29$
equation: end-of-year sore $=29+0.68$.lyginning-cf-gear score or $y=29+0.68 \cdot x$
2. (5 Points) Use the regression equation from part 1. to predict the end-of-year score
for a student who scored 85 on the beginning-of-year test. - 1 if correct result, hut The predicted end-of-year score is: 86.8

$$
\text { (1) (1) (1) } \uparrow(1)
$$

3. (5 Points) Find the r.m.s. error for predicting the end-of-year score from the beginning-of-year score.

$$
\begin{align*}
& \text { The r.m.s. error is: } \frac{13.6}{\sqrt{1-r^{2}} \cdot S D_{y}} \\
&=\sqrt{1-0.6^{2}} \cdot 17 \tag{3}\\
&=\sqrt{1-0.36} \cdot 17
\end{align*}
$$

$$
\begin{aligned}
& =\sqrt{0.64} \cdot 17 \\
& =0.8 \cdot 17 \\
& =13.62_{\text {Please turn over! }}
\end{aligned}
$$

Statistics 1040, Section 009, Quiz 7 (20 Points)

Friday, March 3, 2006

Your Name:

\qquad
lased on: Quid 6, Question 1, Oaring 2003
\& Guin 7, Ouestounl, yang 2005
Question 1: Chance/Probability I (15 Points)
In a box of 15 chocolates, 5 are mint, 3 are orange, 5 are caramel, and 2 are cherry. I choose two chocolates at random (without replacement!).
Show your work!

1. (5 Points) What is the chance that the first is not mint?

$$
\begin{aligned}
& \text {-1 each calalabion error } \\
& \text { (or no final reset in } \% \text {) }
\end{aligned}
$$

The chance is \qquad $\%$.
-4 if $\%>100 \%$ or $\%<0 \%$ fist mint: $\frac{5}{15}$
first not mint: $1-\frac{(1)(2)(2)}{15}=\frac{15}{15}-\frac{5}{15}=\frac{10}{15}=0.667=66.7 \%$
© apposite rule
2. (5 Points) What is the chance that the first two are both orange? The chance is $2,86 \%$.
Airs orange: $\frac{3}{15}$
-second orange, $\frac{2}{14}>$ dependent
given first orange $: \frac{2}{14}$ (2) miltapliantion mule
lott orange: $\frac{3}{15} \cdot \frac{2}{14}=\frac{6}{210}=0.0286=2.86 \%$
3. (5 Points) What is the chance that the first is cherry and the second is caramel?

The chance is \qquad $\%$.

$$
\begin{aligned}
& \text { hurst chung: } \frac{2}{15} \\
& \text { second caramel, } \\
& \text { given first cheryl: } \frac{5}{14} \\
& \begin{array}{l}
\text { int cherry and } \\
\text { heard caramel: } \frac{2}{15}: \frac{5}{14}=\frac{10}{210}=0.0476=4.76 \% \\
\end{array} \\
& \text { (1) (2) (2) }
\end{aligned}
$$

from: FPP, Review t Exarise 7, f. 235 \& Quiz 7, Question 2, Moving 2005 Question 2: Chance/Probability II (5 Points)

A coin is tossed six times. Two possible sequences of results are
(i) H TTHTH
(ii) HHHHHH
(The coin must land on H or T in the order given; $\mathrm{H}=$ heads, $\mathrm{T}=$ tails).
Which of the following is correct?

Circle your answer and explain:

1. Sequence (i) is more likely.
2. Sequence (ii) is more likely.

3 3. Both sequences are equally likely.
Workbook ans wer:
"3. is correct, Every possible string of H's and T's in equally likeleg." (2)
In fact, thine are $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{6}=64$ possible supeinces of H'S\& T's in six cir tioses. Thus, the dance for leech of these aluienis is $\frac{1}{64}=0.0156=1.56 \%$.
Nite that this question ide rot ask whether getting 3H's is more or less likely than getting 6H's, In fact, when we write down all posille sequendes of H's \&T's in disioin tosses, we will see that there are fer more (different) sequences with 3 H 's than there are sequences with 6 it's (jus tone!).

Statistics 1040, Section 009, Quiz 8 (20 Points)
Friday, March 10, 2006
from: Quin 7, Fall 2003
Your Name: \qquad
\& aniz 8, Fall 2004
Question 1: Box Models, EV, and SE (12 Points)
You are participating in a new game that consists of tossing a 10 -sided die, with sides numbered from 1 to 10 . The die is fair, i.e., it has the same chance of landing on any side. Every time the die shows a number that is a multiple of 3 (i.e., 3,6 , or 9) you win $\$ 3$, otherwise you lose $\$ 1$, except when the die lands on 10 , in which case you win (or lose) nothing (\$0). Assume you are tossing this die 200 times.
Show your work!

1. (3 Points) Find the box model.

$$
13 \times 31 \times 0 \quad 6 \times-1
$$

\# drans: 200

- 1 for minar mistake
-2 for major mistale (e.o. 3,6,5 inlox)
-1 if \#drans rut statel

2. (4 Points) Find the expected value of your gain/loss.

$$
\begin{aligned}
& \text { lose arg }=\frac{3 \cdot 3+1 \cdot 0+6 \cdot(-1)}{10}=\frac{3}{10}=0.3 \\
& \text { in 2,8.3.1 } \\
& E V_{\text {sum }}=200 \cdot 0.3=60 \quad[\$] \\
& \text {-1 for lach calculation error } \\
& \text { - } 1 \text { for ench minor mistabe } \\
& \text { - } 2 \text { for lach major mistake }
\end{aligned}
$$

3. (5 Points) Find the standard error of your gain/loss.

$$
\begin{aligned}
& \text { bire } S D=\sqrt{\underline{3 \cdot(3-0.3)^{2}+1 \cdot(0-0.3)^{2}+6 \cdot(-1-0.3)^{2}}} \quad S_{\text {sum }}=\sqrt{200} \cdot 1.79 \\
& =\sqrt{\frac{3 \cdot 2.7^{2}+\left(\cdot(-0.3)^{2}+6 \cdot(-1.3)^{2}\right.}{10}} \\
& =\sqrt{\frac{3 \cdot 7.29+0.09+6 \cdot 1.69}{10}} \\
& =\sqrt{\frac{321}{10}}=\sqrt{3.21}=1.79
\end{aligned}
$$

Arm: FPP , P. 285, Review Exeriase $4 \quad$ [Answers, \rightarrow Warklork!]
Question 2: Law of Averages (8 Points)
Circle your answer for each of the following four parts. You don't have to provide any explanations. [Eselunstions from workflow]

1. (2 Points) A die will be rolled some number of times, and you win $\$ 1$ if it shows an ace (\bullet) more than 20% of the time. [To win, you reed a large gerastage eros, Which is better: 60 rolls or 600 rolls? and that is more likely in 60 oils.]
2. (2 Points) As in 1.), but you win the dollar if the percentage of aces is more than 15%.
Which is better: 60 rolls or 600 rolls?
[Now yon want a mall percentages error.]
3. (2 Points) As in 1.), but you win the dollar if the percentage of aces is between 15% and 20%.
Which is better: 60 rolls or 600 rolls [Again-yeu want a small jerantaje corot.]
4. (2 Points) As in 1.), but you win the dollar if the percentage of aces is exactly $16 \frac{2}{3} \%$.
Which is better: 60 rolls or 600 rolls?
[Because to get iseactly tho eogected woe means getting eseactly sens chance error, and that is more likely with fewer rolls.]

Formulas:

$$
\text { box average }=\frac{\text { sum of all numbers in box }}{\text { how many numbers in box }}
$$

$$
\text { box } \mathrm{SD}=\sqrt{\text { average of }\left[(\text { deviations from box average })^{2}\right]}
$$

$$
\mathrm{EV}_{\text {sum }}=\text { number of draws } \times \text { box average }
$$

$$
\mathrm{SE}_{s u m}=\sqrt{\text { number of draws }} \times \text { box } \mathrm{SD}
$$

Statistics 1040，Section 009，Quiz 9 （20 Points）
Friday，March 24， 2006 part．）：
-1 if slightly incorrat mumbler
Your Name： of（0）1［1］＇s in bose
Aram：Quiz g，Oaring 2004
Question 1：EV，SE，and Normal Curve（ 14 Points）
-1 if lose gives as（1）（1）
-2 if hove contains something other AR 10 IT 1＇s
According to the U．S．Census Bureau＇s＂QuickFacts＂Draw mismingineorect （http：／／quickfacts．census．gov／qfd／states／49000．html），about 26% of Utah resi－ dents age 25 and older have a bachelor degree or higher．Suppose that 500 Utah residents age 25 and older have been randomly chosen to participate in a survey．

1．（2 Points）Find the box model．

$$
26 \times 1 \quad 74 \times 0
$$

1：bachelor degree or higher
0: no such degree
\＃draws： 500
2．（ 6 Points）Find the expected number of Utah residents in this sample of 500 who have a bachelor degree or higher．What is the corresponding SE？

$$
\begin{aligned}
& \text { bose any }=\text { ruction of }\left[\left.1\right|^{\prime} s=\frac{26}{100}=0.26\right. \\
& \text { bore SO }=\sqrt{\begin{array}{l}
\text { fruition } \\
\text { of 目's }
\end{array} \text { fraction }} \begin{array}{l}
\text { of 回's }
\end{array}=\sqrt{\frac{26}{100} \cdot \frac{74}{100}}=\sqrt{0.1924}=0.4386 \\
& \approx 0.44 \\
& E V_{54 m}=500 \cdot 0.26=130 \\
& \text {-1 fat inch calculation error } \\
& \text { SE sum }=\sqrt{500} \cdot 0.44=22.36 \cdot 0.44=9.84
\end{aligned}
$$

3．（ 6 Points）Using the normal curve，find the chance that at most 120 of the Utah γ residents in the sample have a bachelor degree or higher．

$\begin{array}{ccc}120 & 130 & \\ -1 & 0 & \text { s．u．}\end{array}$
area letween－ 1.0 and 1．0：68．27\％
asa below $-1.0: \frac{100 \%-68.27 \%}{2}=\frac{31.73 \%}{2}=15.87 \%$
－ 1 for each calculation error
－ 2 for incorrect carve puranetros，ie．，anything use then EV and SE
－ 2 for incoment s．u．
Please turn over！
－2 for in correct table mice
-2 for incorrect area mender the carve ${ }^{1}$
based on FPP: P. 328, Chapter 18, Percent Exercise 8 \& Quiz 9, spring 2004
Question 2: Normal Approximation for Probability Histograms (6 Points)
A coin is tossed 100 times. True or false? Circle your answer. Answer each of the following questions separately. No explanation is needed.

1. (1 Point True or false: The expected value for the number of heads is 50 .

| Hi |
| :--- | :--- | :--- |
| $T: 0$ |
| Ere: 10 II |
| $\#$ draws: 100 |\(\left|\begin{array}{l}bose ar=\frac{1}{2}

bose S D=\sqrt{\frac{1}{2} \cdot \frac{1}{2}}=\frac{1}{2}

E V_{sum}=100 \cdot \frac{1}{2}=50

S E_{sum}=\sqrt{100} \cdot \frac{1}{2}=5\end{array}\right| \Rightarrow E V_{sum}=50\) ? yes (see left)
2. ($\mathbf{1}$ Point) True or false: The expected value for the number of heads is 50 , give or take 5 or so.

The EV sum is exactly 50, wo give or take

$$
\Rightarrow \text { False }
$$

3. (2 Points) True or false:- The number of heads will be 50 .

The number of heads most likely will not be eseactly 50 , but it will be relatively chose to 50

$$
\Rightarrow \text { Fable } 2
$$

4. (2 Points) True or false: The number of heads will be around 50 , give or take 3 or so.

As calconluted in 1.1

$$
\begin{aligned}
& E V_{\text {sum }}=50 \\
& \text { and } S E_{\text {sum }}=5=" \text { give ot tube" part }(\neq 3) . \\
& \Rightarrow \text { False (overall since the } S E_{\text {sum }} \text { is incorrect) }
\end{aligned}
$$

Please turn over!

Statistics 1040, Section 009, Quiz 10 (20 Points)
Wednesday, April 12, 2006

Your Name: \qquad
from: Onia 10, Fall 2004
Question 1: Confidence Intervals (20 Points)
Political events in the Fall of 2004 were in focus of many surveys and polls nationwide. With four members of the Bush Cabinet resigning within a few days in Fall 2004, a natural concern for every U.S. citizen at that time was: Will the Bush Cabinet resignations have a positive or negative impact on U.S. policy?

This question was asked to a sample of 787 U.S. citizens: 299 of them answered "Positive".

1. (14 Points) Construct a 87% confidence interval for the percentage of all U.S. citizens who think that the Bush Cabinet resignations will have a positive impact on U.S. policy.
Show your work.
1: Positive

$$
\text { bose unknown: }!\times \text { 回 } ? \times 10
$$

0: Negative
\# draws: 787

$$
\begin{align*}
& \text { sample } \%=\frac{299}{787}=0.38=38 \%=\text { quabation } \% \text { (assamizion) } \\
& \text { SO loo }=\sqrt{0.38 \cdot 0.62}=\sqrt{0.2356}=0.485^{(2)}\left(\text { via } h_{0}\left(x_{0} t_{m}\right)\right. \\
& S E_{\text {sam }}=\sqrt{787} \cdot 0.485=28,05 \cdot 0.485=13.6 \text { (2) } \\
& S E \%=\frac{13.6}{787} \cdot 100 \%=1.73 \% \tag{2}\\
& 87 \% \text { CI: came\% } \pm \text { (metancerifor } 81 \% \text {) SE } \% \\
& \text { (2) } \\
& =38 \% \pm 1.50 \cdot 1.73 \% \\
& =38 \% \pm 2.6 \% \\
& =\frac{35.4 \% \operatorname{to} 40.6 \%}{1} \\
& \text { (4) Please turn over! } \\
& \text { (lox overyulution is } \\
& \text { unknown! ! } \\
& \text { - } 2 \text { each calculation error } \\
& -1 \text { if } \% \text { forgotion } \\
& -1 \text { if lore indicated }
\end{align*}
$$

2. (6 Points) For each of the following situations, explain why or why not it would be possible to constuct a 87% confidence interval for the percentage of all U.S. citizens who think that the Bush Cabinet resignations will have positive impact on U.S. policy. Please do not construct the actual confidence interval - just answer each question with Yes or No and provide a very brief explanation.

- The sample of 787 U.S. citizens was obtained by using a computer to randomly generate a sufficent number of valid telephone numbers (including area code) and calling these numbers until 787 valid answers were collected. Is it possible to construct a 87% CI here? - Yes or No? (1)
Explanation:
-this is rot a ses, lit liaised in favor of resole with more than 1 pore line (egg, residential \& cell tore) \& lisaod against people with culler ID (that often do wot rick rp call when they con'A identify the caller) \Rightarrow this clearly dues not resublina CI for all US citisiss
- The sample of 787 U.S. citizens was obtained as a SRS from all U. S. citizens, but 780 of the responders said "Positive" (i.e., thought that the Bush Cabinet resignations will have positive impact on U.S. policy).
Is it possible to construct a 87% CI here? - Yes or No?
Explanation:
- although this is a SRS, it is

$$
\text { sample } \%=\frac{780}{787}=0.991=99.1 \%
$$

which is too close ti 100%

- The 787 answers come from the Quick Poll at the CNN Web page (http://www.cnn.com).
Is it possible to construct a 87% CI here? - Yes or No?
Explanation:
 access, read the CNN With page, and may lase some strong opinion \Rightarrow this clearly dues not result in a CI for all U.S. citizens

Statistics 1040，Section 009，Quiz 11 （20 Points）
Wednesday，April 19， 2006

Your Name： \qquad
from：That 1040，Fall 1999，Final vest，December（7，1999，Question 3
Question 1：Tests of Significance（ 20 Points）\＆Owl II，等ll 2003
A journal article claims that 60% of North American adults are too sedentary．Suppose you think a lower percentage of Cache Valley adults are too sedentary．To test your belief，you take a simple random sample of 120 Cache Valley adults and find that only 68 of them are too sedentary．Test to see if your belief is correct．（You may assume that everybody is using the same definition of＂too sedentary＂，although in practice this would be contentious）．Show your work！
－Rif mull，alt．
z－hest：1．（5 Points）State the null and the alternative hypothesis for this problem，in words sopped and in terms of the box model．
（2）
（1）null：Cache valley adults are abs＂too sedentary，is ．e．，bose $\%=60 \%$ ．
alternative：fewer cache valley adults are＂too sedintaing＂，1．e，lox $\%<60 \%$
2．（ 5 Points）Calculate the appropriate test statistic of the mull is true，the simple \％should le like
（2）

$$
\begin{align*}
& \text { observed } \%=\frac{68}{120} \cdot 100 \%=56.7 \% \\
& \text { selected } \%=60 \%=E V \% \\
& S D_{b o x}=\sqrt{060_{0} 4}=\sqrt{0.24}=0.49 \text { (1) } \tag{1}\\
& S_{\text {Sum }}=\sqrt{120} \cdot 0.49=10.95 \cdot 0.49=5.37(D) \quad \begin{array}{l}
a b \%, 2 \% \\
56.7 \%-60 \%
\end{array} \tag{2}\\
& S E \%=\frac{5.37}{120} \cdot 100 \%=4.475 \%
\end{align*}
$$

$$
\begin{align*}
& \text { 3. (5 Points) Obtain the } \mathrm{P} \text {-value (use the normal table on the back). SE } T \tag{1}
\end{align*}
$$

（3） P－value
area between -0.75 友 $0.75: 54.67 \%$
area below－0．75：$\frac{100 \%-54.67 \%}{2}=22.67 \%$
p－value $\approx 23 \%$（2）
4．（5 Points）State conclusions in terms of rejecting the null hypothesis and in your own words．
（4）\rightarrow ，do not reject null（ P－value $>5 \%$ ）
－Cache valley adults are abs＂Coo sedentary＂＂ie．，no evidence that
Please turn over！
cube valley adults are less sedentary then the rational figure

Your Name:
Aram: That 10rO, Fall 2004, Final Test, December 15, 2004, Question 9 Question 1: Tests of Significance II (20 Points)

Researchers think anti-epileptic drugs accelerate bone loss in elderly women. To investigate, 12 women were randomly selected from all elderly women taking anti-epileptic drugs and they were monitored for a period of 5 years. At the end of the study, researchers measured their bone mineral density on a standardized scale. The average of the 12 measurements was -0.24 with an SD of 1.22 . It is known that bone density measurements follow the normal curve. (Note that negative values of bone mineral density correspond to accelerated bone loss.)

Test the hypothesis that the average for all such women is 0.0 against the alternative hypothesis that it is less than 0.0 . State a null and an alternative hypothesis, find a test statistic and a P -value, and clearly state your conclusions.

Indicate whether this is a \mathbf{z}-test, t -test or 2 -sample \mathbf{z}-test. Circle your answer and explain why you haven chosen that test. "amplise size $<30 \checkmark$

Show your work!

$$
\begin{align*}
& 21 \text { observed (ain) }=-0.24 \\
& \text { expected }(\text { ag g })=0.0 \\
& S D^{t}=\sqrt{\frac{12}{11}} \cdot 1.22=1.044 \cdot 1.22=1.27 \tag{2}\\
& S E_{\text {sam }}=\sqrt{12} \cdot 1.27=3.46 \cdot 1.27=4.41 \tag{2}\\
& S E_{\text {avg }}=\frac{4.41}{12}=0.368 \tag{2}\\
& t=\frac{-0.24-0}{0.368}=-0.65 \tag{2}\\
& d f=12-1=11 \tag{2}
\end{align*}
$$

$$
\begin{array}{r}
3, t=-0.65 \text { above }-0.70 \\
\downarrow \\
25 \%
\end{array}
$$

~) P-value grate than 25%
4) - do not reject the mull (P-value $>5 \%$)

- drugs have no effect on bone loss

