Statistics 1040, Sections $007 \& 009$, Midterm 1 (200 Points)
Friday, October 5, 2007

Your Name: \qquad

Question 1: Correlation / Regression I (25 Points)
from: FPP, Chanter II, Review Exercise 6
(Solutions: \rightarrow Worklork)

1. (13 Points) In a study of high-school students, a positive correlation was found between hours spent per week doing homeworks, and scores on standardized achievement tests. The investigators concluded that doing homework helps prepare students for these tests. Does the conclusion follow from the data? Answer yes or no, and explain briefly.
"The conduction seems right, lat does not follow from the data. It could be, for example, that letter students spend more time doing homework anyway". (Association is not causation!)
from: FPP, Ulster II, Review Esaraise 7
(Solutions: \rightarrow Worklook)
2. (12 Points) The freshmen at a large university are required to take a battery of aptitude tests. Students who score high on the mathematics test also tend to score high on the physics test. On both tests, the average score is 60 ; the GDs are the same too. The scatter diagram is football-shaped. Of the students who scored about 75 on the mathematics test:
(i) just about half scored over 75 on the physics test.
(ii) more than half scored over 75 on the physics test.
(8.) (iii) less than half scored over 75 on the physics test.

Choose one option and explain.
"Regression effect": with 75 points, students belong to the top your on the mattermatis test - therefore, it is natural that they will fall back on average on the physics test
from: Stat 1040, Erring 2006, Final Test, Question l
(Solutions: \rightarrow Wib-Page)
Question 2: Controlled Experiment / Observational Study (40 Points)
The following is part of an article from Newsweek, April 24, 2006. This question concerns the Women's Health Study, described in the second paragraph.
Take an Aspirin and ...
BY JULIE BURING, SC.D., AND NANCY FERRARI
Aspirin is a wonder drug, plain and simple. At high doses, it quells inflammation; at medium doses, it provides effective pain relief; at low doses, it reduces the blood's ability to clot by inhibiting the action of tiny blood cells called platelets. It makes sense, then, that aspirin might help prevent clot-related cardiovascular events such as heart attack and stroke, even in healthy people. In 1988, the Physicians' Health Study showed exactly that. In healthy men, 325mg of aspirin taken every other day for five years reduced the risk of a first heart attack by 44 percent. That was great news. For men.
It wasn't until March 2005 that the Women's Health Study addressed aspirin's benefits for women. Healthy women - who were at least 45 years old at the start of the study - who participated in the study took either 100 mg of aspirin or a placebo every other day for 10 years. Surprisingly, the women taking aspirin experienced no reduction in heart-attack risk. However, aspirin takers were 17 percent less likely to have a stroke. ...

1. (10 Points) Is the study controlled? How do you know?
(yes), it is controlled - women were given an aspirin (in the treatment graph)
(7) or a plato (in the control gran)
2. (10 Points) Is the study blind? How do you know?
(yes), it is blind- us a placebo was given, women could not juibenketter
(7) Hey were given the val aspirin treatment or not (3)
3. (10 Points) What is a placebo? Why is it used?
a placelo looks like the real treatment [ie, aspirin here, lat it has no active ingreetinats; (5) it is man to runt that people resporal to the idea (5) of treatment, ratter than the treatment itself
4. (10 Points) The article does not say how the women were assigned to the aspirin and placebo groups. What is the best way to do this, and why?
participants should he assigned randomly (5) to the two groups; This will reduce the effect of all possible confounding factors sine as age, gender, Atc.
besedon: Strut 1040, Paring 2006, Final Test, Question Y [Nev Numbers!]
Question 3: Normal Curve (45 Points)
For 167 college students the average handspan size is 20.9 inches, with an SD of 1.9 inches. Fill the blanks in the statements below and show all the work needed to obtain the answers.
-2 for each calculation error
+2 for conect gray h (and mothingabs)
5. (15 Points) Using the normal curve, approximately what percentage of the students have a handspan of more than 20 inches?
The answer is: $67.37 \% \quad[69.15 \%]$

$$
\begin{equation*}
\text { si.: } \frac{20-20.9(5)}{1.5}-0.473 \approx-0.45 \quad[\text { or }-0.50] \tag{5}
\end{equation*}
$$

-0.450 si. area between $-0.45 \mathrm{ardc} 0.45: 34.73 \%$
[area bet ween - $0.50 \mathrm{and} 0.50: 38.29 \%$]
area above $-0.45: 50 \%+\frac{34.73 \%}{2}=67.37 \%$ (5)
[area alone $-0.50=50 \%+\frac{38.29 \%}{2}=69.15 \%$]
2. (15 Points) And what percentage of the students have a handspan of more than 24 inches?
The answer is: $\quad 4.95 \quad$ [5.48\%]

$$
\begin{equation*}
\left.\underset{20.924}{\sim} \text { s.u.: } \frac{24-20.9}{1.9} \stackrel{(5)}{=} 1.632 \approx 1.65 \quad \text { [or } 1.60\right] \tag{5}
\end{equation*}
$$

$0 \quad 1.65$ s.u.
area between -1.65 and 1.65: 90.11\%
[area bet ween - 1.60 and 1.60: 89.04%]
area above 1.65: $\frac{100 \%-90.11 \%}{2}=4.95 \%$ (5)
[aver above 1.60: $\frac{100 \%-89.04 \%}{2}=5.48 \%$]
3. (15 Points) If 80 percent of the students have a smaller handspan than the teacher, what is the teacher's handspan?
The answer is: 22.52 inches

$-z \quad z^{2}$?
(5)
original units: $0.85 \cdot 1.9+20.9^{(5)}=22.52$ niches
from: It at 1090, En ring 2006, Final test, Question 5 Question 4: Correlation / Regression II (50 Points)

For the 167 college students in Question 3, the relationship between height and handspan size is summarized as follows:
x height: average $=68.0$ inches
y handspan size: average $=20.9$ inches

$$
r=0.75
$$

$$
\begin{aligned}
& \text { paint of averages } \\
& \text { ge }=68.0 \text { inches } \\
& \text { ge }=20.9 \text { inches } \\
& 75
\end{aligned}
$$

$$
\begin{array}{r}
\text { abut } 95 \% \text { of data within } 68 \pm 2 \cdot 4.0 \\
\downarrow \\
=60 \text { to } 76
\end{array}
$$

$$
S D=4.0 \text { inches }
$$

$$
S D=1.9 \text { inches }
$$

$$
\text { aleut } 95 \% \text { of data within } 20.9 \pm 2 \cdot 1.9=17.1 \text { to }
$$

Fill the blanks in the statements below and show all the work needed to obtain the 24.7 answers.

1. (10 Points) Six scatter diagrams are printed on the next page. Which of the scatter diagrams is the correct one for these data? Circle the correct letter below (No explanation is needed for this part!):
A BC D E F
[see figure for explanation - but not needed]
2. (15 Points) Using the summary statistics above, what is the regression estimate for handspan for a student who is 60 inches tall?
The answer is: \qquad inches

$$
\begin{align*}
& \text { sue }=\frac{60-68}{4}=-2 \tag{5}\\
& \text { s.u.y }=-2 \cdot 0.75=-1.5 \tag{5}\\
& y=-1.5 \cdot 1.9+20.9=18.05 \text { inches } 5
\end{align*}
$$

3. (15 Points) Find the r.m.s. error for your answer in the previous part.

The answer is: 1.26 inches

$$
\text { r.m.s.error }=\sqrt{1-0.75^{2}} \cdot 1.9=1.26 \text { inches not square or incorrect } 50 \text {) }
$$

4. (10 Points) What would the correlation coefficient be if we changed all the handspan measurements to centimeters? (There are 2.54 centimeters in an inch).
The answer is: $\tau=0.75$

Formulas:

$$
\text { r.m.s. error }=\sqrt{1-r^{2}} \times \mathrm{SD}_{y}
$$

Execute in possible plots:

farm: It at 1040, Ip ring 2006, Auiz2, Onestion 2
\&. FPP, Chanter 3, Exarase Yet C, Exercise 3, p. 41
Question 5! Histograms / Change of Scale (40 Points)
An investigator draws a histogram for some height data, using the metric system. She is working in centimeters (cm). The vertical axis shows density, and the top of the vertical axis is 10 percent per cm . Now she wants to convert to millimeters (mm). There are 10 millimeters to the centimeter. On the horizontal axis, she has to change 175 cm to 1, 750 (i) mm , and 200 cm to $2,000.16 \mathrm{~mm}$. On the vertical axis, she has to change 10 percent per cm to (10) percent per mm , and 5 percent per cm to 0.5 (10) percent per mm .

Just fill in the correct answers - no explanation is needed.
Teat look: "The idea on density: J4, you spread el 10 percent evenly over $1 \mathrm{~cm}=10 \mathrm{~mm}$, there is I perant in each mm that is I I verdant per mm."

