Name: $\qquad$
Final Test, December 13, 11:30pm-1:20pm

$$
100 \rightarrow 400
$$

Show your work. The test is out of 100 points and you have 110 minutes to finish.
$7 \geqslant 28$ 1. In the December 10 issue of NEWSWEEK medical writer Jerry Adler says:
It's not too soon to start thinking about New Year's resolutions, and here's mine, as a medical writer: I will not report on any amazing new treatments for anything, unless they were tested in large, randomized, placebo-controlled, doubleblind clinical trials published in high-quality peer-reviewed medical journals. If that means not telling NEWSWEEK's readers about, say, a new magnetized-water cure for osteoporosis, cancer and autism - well, there are infomercials to fill that gap.
$[8$ (a) (2 points) Explain what it means for a study to be double-blind.
The subjects do not know whether they are in the treatment or in the control.
group; (4) not do the doctors and numbs know who work with these subjects. (4)
(12) (b) (3 points) Give 3 different reasons why a medical study should be double-blind:

- it guards against bias in the subject' responses
- it guards against lias in the doctors' and nurses' behavior towards the subjects
- it guards against lias in doctors' assessopent of a disease, i.e., did the patient improve / fully recover from the disease or not?
[8] (c) (2 points) What is a placebo? Why is it used?
- a placebo is a drug or vaccination (eg., a sugar pill or a salt water in jection! that resembles the trent meat, Lat has no medical effect
- it is used such that the subjects' response will le related to the
treatment itself and not to the idea of the treatment
$5 \rightarrow 20$

2. (5 points) Psychologist Daniel Kahneman was teaching flight instructors that praise is more effective than punishment for promoting learning, when one of the most seasoned instructors in his audience raised his hand and said, "On many occasions I have praised flight cadets for clean execution of some aerobatic maneuver, and in general when they try it again, they do worse. On the other hand, I have often screamed at cadets for bad execution, and in general they do better the next time. So please don't tell us that reinforcement works and punishment does not, because the opposite is the case."
What does statistics say about this instructor's experience?
This is the regression effect (8) In virtually all test-ritesA situations, the bottom group on the first test mill ion average show some improvement an the second test -and the top group will on average foll back. Thinking that the regression effect must Re due to something important, and not just due to the spread of the data around the regression line, is the regression fallacy, (6)
$5 \rightarrow 20$ 3. ( 5 points) For a sample of 570 California women age 25 to 29 in 2005 the relationship between education (years of schooling completed) and income can be summarized as follows:
$\times$ Average education $\approx 13.0$ years, $\mathrm{SD} \approx 3.4$ years
Y Average income $\approx \$ 18,000, \quad \mathrm{SD} \approx \$ 20,000 \quad \mathrm{r} \approx 0.37$
-2 for each inloulition ensor
Predict the income for one of these women with 15 years of education.

$$
\begin{aligned}
& \text { plage }=v \cdot \frac{S D Y}{S D X}=0.37 \cdot \frac{20,000}{3,4}=2,176.5 \\
& \text { intercept }=\text { avg. }- \text { sloge } \cdot \operatorname{avg} x=18,000-2,176,5 \cdot 13=-10,294.5
\end{aligned}
$$

regression equation: $y=-10,294.5+2,176,5 . x$
income for 15 gears of education: $y=-10,294,5+2176,5 \cdot 15^{6}=\$ 22,353$
(5 points) A 1999 study claimed that
$5 \rightarrow 204$. (5 points) A 1999 study claimed that
Infants who sleep at night in a bedroom with a light on may be at higher risk for myopia (nearsightedness) later in childhood.

The researchers surveyed parents of 479 children aged 2 to 16 seen in the ophthalmology outpatient department of a children's hospital. A questionnaire asked about the child's nighttime light exposure at the time of the survey and before age two. They noticed a positive association between myopia and nighttime light exposure.
Explain why this is not strong evidence that sleeping with a light on causes myopia by suggesting a possible confounding factor and explaining how this confounding factor could account for the association they observed.
Erst of all, association is not causation!
Possible confounding factors are:

- genetics: actually, rearoightedress tends to run in families
- more over, Lit p: // en. wivipedia.org/wiki/My apia, lists ethnicity, race,
- age: a child aged 3 may not 2 hare had the tine to develop myopia, whereas a child aged 16 may hare developed myopia for numetous reasons over time

5. For a road trip, a student places the following ten CDs into the glove compartment of his car

- 6 modern rock CDs (Fallout Boy, Hawthorne Heights, The Used, Finger Eleven, Taking Back Sunday, She Wants Revenge),
- 3 pop CDs (PInk, Fergie, Gwen Stefani),
- 1 American Idol CD (Jordin Sparks).

On his trip, the student blindly grabs a CD from the glove compartment, listens to it, and places it on the back seat when finished. Then he blindly grabs a second CD from the glove compartment. You should NOT comment on the musical taste of this student, but answer each of the following questions separately.
88 (a) (2 points) What is the chance that the SECOND CD will be a pop CD or the American Idol CD ?

88 (b) (2 points) What is the chance that he will listen to Jordin Sparks as one of his two

8 (c) (2 points) What is the chance that he will listen to none of the pop CDs? $=\frac{2}{10}=0.2=20 \%$ intros ron and 2 nod not ron

$$
\frac{7}{10(3)} \stackrel{6}{9}(3)=\frac{42}{90}=0.467=46.7 \%
$$

8 (d) (2 points) What is the chance that he will listen to at least one of the modern rock CDs?

6. (8 points) In October 29 to November 1 2007, a local survey organization questioned 603 residents in Utah. They found that $23 \%$ of those surveyed "definitely favor" building a nuclear power plant in Utah. Assuming this is a simple random sample of Utahns, find a $90 \%$ confidence interval for the percentage of all Utahns who would say that they "definitely favor" building a nuclear power plant in Utah.

$$
\begin{aligned}
& \text { sample } \%=23 \% \\
& S P=\sqrt{0.23 \cdot 0.77}=0.421 \\
& S E_{\text {Sam }}=\sqrt{603} \cdot 0.421=10.34 \\
& S E_{\text {O }}=\frac{10.34}{603} \cdot 100 \%=1.7 \%
\end{aligned}
$$

$$
90 \% \text { CI: } 23 \% \text { (4) } \frac{t}{6} \text { (4) (4) } 1.7 \%=\frac{20.2 \%}{(4)} \text { to } \frac{25.8 \%}{(2)}
$$

$$
\begin{aligned}
& \text { and no } \\
& \text { una } 3 \text { lat } \\
& \left.\frac{3}{10}+3\right)+(2) \frac{1}{10}(3) \\
& =\frac{4}{10}=0.4=40 \%
\end{aligned}
$$

$33 \rightarrow 132$
7. A grocery store carries a variety of "on the vine" tomatoes with an average weight of 5.0 ounces and an SD of 0.9 ounces. The weights of these tomatoes follow the normal curve.

24 (a) (6 points) What percentage of them would weigh more than 6.0 ounces?
-2 french inlculition error


$$
\begin{equation*}
\text { S.u.: } \frac{6.0-5.08}{0.9}=\frac{1.0}{0.9}=1.11 \tag{8}
\end{equation*}
$$

0 l.ll sue.
area between - 1.10 and 1.10:72.87\%
area above $1.10: \frac{100 \%-72.87 \%}{2}=13.57 \%$ (8)

24 (b) (6 points) Estimate the 25th percentile of their weights.

area letween - 0.65 and 0.65: 48.43\% (doses to 50\%)

$$
\text { original units: }-0.65 \text { : } 0.9+5.0=4.42 \text { andes }
$$

(8) (2) (2) (2) (2)
$[24$ (c) (6 points) Find the chance that the total weight of 100 randomly selected tomatoes will be more than 506 ounces.

$$
\begin{align*}
& E V_{\text {sam }}=100 \cdot 5.0=500  \tag{5}\\
& S E_{\text {sum }}=\sqrt{100} \cdot 0.9=9 \tag{5}
\end{align*}
$$



$$
\begin{equation*}
\text { s.u.: } \frac{506-500}{9}=\frac{6}{9}=0.67 \tag{5}
\end{equation*}
$$

area letween - 0.65 and $0.65: 48.43 \%$
$0 \quad 0.67$ s.4.
area above $0.65: \frac{100 \%-48.43 \%}{2}=25.79 \%$
 wo miss that a $f$-者 $t$ comes to mind at first. Inthiscam, you get full points for a $z$-test or a t-test.
40 (d) (10 points) I'm a little skeptical of the claim that the average weight of the tomatoes is 5.0 ounces $-I$ think it might be somewhat greater than 5.0 ounces. I select 9 tomatoes at random and find the following weights: - 30 for incorrect test (other than wort) $\begin{array}{llllllllllll}6.1 & 4.4 & 6.3 & 5.7 & 4.5 & 6.9 & 5.1 & 5.8 & 5.7 & -4 & \text { if mull, alt swapped }\end{array}$
\{ut first $\left\{\begin{array}{l}\text { Is there evidence that the average weight of this type of tomato is greater than } 5.0\end{array}\right.$ \}ounces? Clearly state the null and alternative hypotheses, calculate the appropriate test glance \{statistic, find the $P$-value, and state your conclusion.

11 mill: tomatoes hare worried weight, (2) ce, loseary $=5.01$
alternative: tominties are heavier (2) ie, bod arg $>5.0$ (1)

- data fellow normal carne
(3) $t=\frac{5.6-5.0}{0.27}=2.22$

21 olocored (aug) $=\frac{6.1+4.4+\ldots+5.7}{9}=5.6$
(3) 3 af $=9-1=8$
expected (aral) $=5.0$
$S D=\sqrt{\frac{(6.1-5.6)^{2}+(4.4-5.6)^{2}++(5.7-5.6)^{2}}{9}}=0.77$
$t=2.22$ between 1.86 and 2.31
$P$-value le tween $5 \%$ and $2.5 \%$ (3)
$S O^{+}=\sqrt{\frac{9}{8}} \cdot 0.77=0.82$
$S E_{\text {sum }}=\sqrt{9} \cdot 0.82=2.46$ (2)
$4)$ a reset the mull

- risubl is stat. significant (3)
- tomato e are heavier (3)

20 (e) ( 5 points) Which, if any, of your answers to the first 4 parts of this question would still be reliable if you were told that the weights of the tomatoes did NOT follow the normal
curve? Explain.

- Lota fellow normal ave

11 as allure
different rats (no SO e SO ${ }^{+}$calalalation):
uttered (ar
2) $S E_{\text {sum }}=\sqrt{9} \cdot 0.9=2.7$

$$
\begin{equation*}
\text { SEavg }=\frac{2.7}{9}=0.30 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
z=\frac{5.6-5.0}{0.30}=2.0 \tag{4}
\end{equation*}
$$

3, area between $-2.0 \mathrm{man} 2.0: 95.45 \%$

$$
\begin{equation*}
P_{\text {-indue }}=\frac{100 \%-95.45 \%}{2}=2.28 \% \tag{5}
\end{equation*}
$$

4, as above
(g)
(e)

- parts (a), (b), (d) [bot stor the t-test and the $z$-test] require normality
- (d) does not require normality and Hiceffore would till be reliable; (10)
recall the Central Limit Theorem (FPP, P. 325): When drawing at random witt replacement from a lox, the probability histogram for the sum (5) will follow the normal curve, even if the contents of the bose do not. -8 for ing additionally listed part

$$
x^{2}-\text { tot for indenchane }
$$

$$
\left(\begin{array}{ll}
(1)=\frac{4346.3862}{7963}=2108 & (2)=4346-2108=2238 \\
\text { (3) }=\frac{199663862}{7963}=968 & \text { (4) }=1996-968=1028 \\
\text { (5) }=3862-968-2108=786 & \text { (6) }=1621-786=835
\end{array}\right.
$$

8. A recent "live vote" survey on MSNBC.com asked participants whether men or women talked most. Anyone visiting the site was allowed to vote as many times as they wanted. The results are summarized in the following table.

| $\quad$obs. count <br> Response | $\|c\|$ <br> Gender of <br> the participant <br> Female <br> Male | Total |  |
| :--- | :---: | ---: | :--- |
| Women talk more | 1352 | 2994 | 4346 |
| Men talk more | 1545 | 451 | 1996 |
| Evenly split | 965 | 656 | 1621 |
| Total | 3862 | 4101 | 7963 |

-27 for incomes test $A$.
esencount -4 if mull, alt suarpel

- 2 for zach calouliution error

| (1) 2108 (2) 2238 | 4346 |  |
| :--- | :--- | :--- | :--- |
| (3) 968 (4) 1028 | 1996 | $6 \times(1)=6$ |
| (5) 786 (6) 835 | 1621 |  |
| 3862 | 4101 | 7963 |

For parts (a) through (g), treat this as a simple random sample from a population of interest, and suppose we are interested in knowing whether a person's gender is independent of their response for this population.
I) 4 (a) (1 point) Clearly state the null hypothesis.
mull: gender and resparse are independent (3) ie., boxes are identical.
(4] (b) (1 point) Clearly state the alternative hypothesis.
alternative: gender and response are not independent, (3) tie. at leastove bose is different (1)
$2 / 12$ (c) (3 points) Find the appropriate test statistic. (Note: if you cannot calculate the answer to this part, use test statistic $=10$. This is not the correct answer, but you can them proceed with the rest of the problem).
$\rightarrow$ rel albee
(d) (1 point) Find the desires of freedom. $\frac{\left(45(-1028)^{2}\right.}{1028}+\frac{(965-786)^{2}}{786}+\frac{\left.(656-835)^{2} 6\right)}{835}=1273.4$
$d f=(3-1) \cdot(2-1)^{4} \underline{4}^{2}$
3/
49 (e) (1 point) What can you say about the size of the $P$-value? $x^{2}=1273.4$ (fart to the right of 9,21 (2) $P$-value (much) smaller than $1 \%$ (2)
4/4] (f) ( 1 points) Do you reject the null hypothesis? Why or why not?

- yes, reject the mull (2)
- result is highly stat significant, i.e.i the P-value is (much) sounder than $1 \%(2)$
[4] (g) (1 points) For this population, what are your conclusions about a person's gender and their response?
- gender and response are not independent

8 (h) (2 points) On the web page, MSNBC.com states that this is "not a scientific survey" and points to a page titled "How 1,000 people can be more representative than 200,000 ". Give 2 different reasons why this survey would not be representative of the population of people who visit that particular website.

- the survey is biased towards people no have a computer and access this
(4) for each particular web site (ant this is not a simple random sample) valid vex
- such surveys often are answered by people with strong opinions
- people are allowed to answer more than once

9. (8 points) National data show that the number of years of schooling of people age 18 and over has an average of 13 years. A simple random sample of 700 people age 18 and over from a certain county has an average of 14 years of schooling, with an SD of 5 years. Can the difference between the average for the nation and the average for the sample be due to chance error or is there evidence that this county is different from the nation? Clearly state the null and alternative hypotheses, calculate the appropriate test statistic, find the P -value, and state your conclusion.
Z-test: sample size $>30$
If mull: schooling in this county is us in the ration,

$$
\begin{equation*}
\text { - ie.; boo avg }=13 \tag{1}
\end{equation*}
$$

alternati ne: schooling in thicoust is different from the sistion, (2)

$$
\begin{equation*}
\text { ill., loseang } \neq 13 \tag{4}
\end{equation*}
$$

(i)

$$
\begin{equation*}
2 \text { observed (arg) }=14 \tag{4}
\end{equation*}
$$

expected (avg) $=13$
$S D=5$

$$
\begin{align*}
& S D=5  \tag{3}\\
& S E_{\text {sum }}=\sqrt{700} \cdot 5=132.3  \tag{3}\\
& S E_{\text {avg }}=\frac{132.3}{700}=0.19  \tag{3}\\
& Z=\frac{14-13}{0.19}=5.26 \tag{3}
\end{align*}
$$



$$
P-\text { value }=\text { area outside }=\operatorname{almost} 0 \%
$$

4, reject the null

- result is highly stat. significant (3)
- schooling in this county is different from the notion
$10 \rightarrow 40$. 10 points) In a randomized, controlled, double-blind study published in The Journal of the American Medical Association in October 2007, researchers followed 371 heavy drinkers for -30 for inconeat 14 weeks to try to determine whether the migraine drug Topamax could help them to quit test drinking. By the end of the study, 27 of the 183 people in the Topamax group had quit drinking completely, while only 6 of the 188 people in the placebo group had quit drinking completely. -4 if milf, alt Is this evidence that Topamax helps, or could the result just be due to chance error? Clearly swayed state the null and alternative hypotheses, calculate the appropriate test statistic, find the -2 french P-value, and state your conclusion. T: Jopomase grime
2-sample $z$-test: $\quad C$ : Control group (glacebol
1, mull: Tana Chelequitdrinking of the sane rate,

$$
\begin{equation*}
\text { are., box T\% - box c\% }=0 \% \tag{1}
\end{equation*}
$$

alternative: t helps quit drinking at a higher note, (2)

$$
\begin{equation*}
\text { i.e., } b_{0}+\%-\operatorname{lox}_{c} \%>0 \% \tag{3}
\end{equation*}
$$ calculi tina em or

$$
\begin{align*}
& S E_{\text {diff } \%}=\sqrt{\left(2.62 \% \mathrm{i}^{2}+(1.28 \%)^{2}\right.}=2.92 \%  \tag{2}\\
& z=\frac{14.75 \%-3.19 \%}{2.92 \%}=3.96 \text { (3) } \tag{3}
\end{align*}
$$

3/ area hutween-3.95ard 3.95:99.992\%
$p$-value = area adore 3.95

$$
\begin{equation*}
=\frac{100 \%-99,992 \%}{2}=0,004 \%(3) \tag{2}
\end{equation*}
$$

2) samplesise $T=\frac{T}{183}$

$$
\begin{align*}
& \text { sample } T \%=27 / 183=14.75 \% \\
& S D_{T}=\sqrt{0.1475} \cdot 0.8525  \tag{2}\\
& S E_{\text {sum }}=\sqrt{183} \cdot 0.355  \tag{2}\\
& S E_{\%} T=\frac{4.80}{183} \cdot 100 \%=2.62 \% \tag{2}
\end{align*}
$$

(2) simple $C \%=6 / 188=3.19 \%$
$S O_{C}=\sqrt{0.0319 \cdot 0.9681}=0.176$ (2)
$\%$ (2) $\mathrm{SE}_{\%} \mathrm{C}=\frac{2.41}{188} \cdot 100 \%=1.28 \%$

- result is highly stat significant
- Thelfs quit drinking at (2) a higher rate

