Stat 2000 International - Sample Midterm 2 - Answers

1. Correct answer: d. discrete random variable
2. Correct answer: b. 0.62
3. Correct answer: c. 4
4. Correct answer: b. $\$ 145$
5. Correct answer: a. 0.923
6. Correct answer: b. About 88.0 F
7. Correct answer: b. to become more peaked
8. Correct answer: d. The sampling distribution of the proportion of "heads" in 50 flips of a fair coin would be skewed towards the higher values.
9. Correct answer: b. 68
10. Correct answer: c. $\$ 268.33$
11. Correct answer: c. describe the sampling distribution of sample proportions
12. Correct answer: d. 52% to 55%
13. Correct answer: d. We can be 95% confident that between 78% and 84% of all adults say they always wear seatbelts in the front seat of a car.
14. Correct answer: c. 22.1 to 23.9 [explanation: the most narrow interval]
15. Correct answer: b. We can be 90% confident that the true average body temperature of healthy adult Americans is between 98.17 and 98.44 degrees Fahrenheit.
16. Answer: $\mathrm{P}($ at most 5$)=.60$
17. Answer: 56 expected blacks; $\mathrm{SD}=7.178$
18. Answer: They are the same: both 0.2 .
19. Answer:
$\mathrm{P}(25<s<35)=\mathrm{P}\left((n-1)^{*} 25^{\wedge} 2 / 30^{\wedge} 2<(n-1)^{*} \mathrm{~s}^{\wedge} 2 / 30^{\wedge} 2<(n-1)^{*} 35^{\wedge} 2 / 30^{\wedge} 2\right)=\mathrm{P}\left(9^{*} 225 / 900<\right.$ Chi-squared on $\left.n-1<9^{*} 1225 / 900\right)=\mathrm{P}(2.25<$ Chi-squared on $9 \mathrm{df}<12.25)=\mathrm{P}($ Chi-squared on $9 \mathrm{df}>2.25)-\mathrm{P}($ Chi-squared on $9 \mathrm{df}>12.25)=0.9869-0.1996=0.7873$
20. Answer: $n=20$ and $p=0.25$
21. Answer: 0.9125 or between $91^{\text {st }}$ and $92^{\text {nd }}$ percentile.
22. Answer: 0.733

For a height of 62 , the z -score is $(62-65) / 2.7=-1.11$. In the probability calculator, type "1.11 " in the z-score box and click on "Left." The proportion of women with heights lower than 62 is 0.1335 .

For a height of 68 , the z-score is $(68-65) / 2.7=1.11$. In the probability calculator, type " 1.11 " in the z-score box and click on "Left." The proportion of women with heights lower than 68 is 0.8665 .

The proportion of women with heights lower than 68 is 0.8665 , including those with heights below 62. And, the proportion of women with heights lower than 62 is 0.1335 . Therefore, the proportion of women with heights between 62 and 68 is $0.8665-0.1335=0.733$.
23. Answer : 0.1013

In the binomial calculator, specify:
$n=50$
$p=0.50$
Prob X is "at least" "30"
The binomial calculator tells you that there is a 0.1013 chance that at least 30 of the 50 participants prefer Brand A.
24. Answer: 0
[explanation: $\mathrm{df}=(\# \text { rows }-1)^{*}(\#$ columns -1$)=(3-1)^{*}(2-1)=2$.]
chance $=0$
25. Answer: The two confidence intervals do not overlap. Therefore, we can conclude that the average weight change in a population of newborns continuously exposed to the sound of a heartbeat is greater than the average weight change in a population of newborns exposed to no sound.

To calculate a Z confidence interval for a mean in DataTools:
Click Stat > Z Statistics > One Sample.
Select the variable.
Type in the estimated sigma.
Click Next.
Click on Confidence Interval. The default level is 0.95 .
Click Calculate.
Your DataTools output for the heartbeat population should look like:

95\% Confidence interval results:
μ-mean of Variable (Std. Dev. $=63.94$)

Variable	\mathbf{n}	Sample Mean	Std. Err.	L. Limit	U. Limit
heartbeat	102	41.568626	6.331003	29.16009	53.977165

and your DataTools output for the control population should look like:

95\% Confidence interval results:

μ - mean of Variable (Std. Dev. $=79.75$)

Variable	n	Sample Mean	Std. Err.	L. Limit	U. Limit
control	112	-28.794643	7.5356665	-43.564278	-14.025007

