1. The text below shows the headlines and an excerpt from an article that was published in the CNN “Health” section at www.cnn.com.

Study: Men have biological clocks, too

Thursday, February 6, 2003 Posted: 8:51 AM EST (1351 GMT)

Women aren’t the only ones with a ticking biological clock. A new study adds to the evidence that men’s fertility declines with age, too.

“If men are choosing to delay fatherhood, they may want to reconsider,” said Dr. Brenda Eskenazi, a professor at the University of California at Berkeley and one of the lead researchers of the study. “There may be an impact on the probability that they will be able to father a child.” […]

Eskenazi and her team looked at 97 men, aged 22 to 80 years, and found that, as men age, the quality of their sperm declines. […]

More details on this study were published in an article entitled “The association of age and semen quality in healthy men” in the journal *Human Reproduction*, February 2003, where it is stated that a

“sample of 97 non-smoking men (aged 22-80 years) without known fertility problems was recruited […]. The men provided semen samples and additional information relating to lifestyle, diet, medical and occupational details.”

8. (a) (2 points) Based on the information you have, is it an observational study or a controlled experiment? Circle your answer and explain briefly.

- **Observational study**

1. *No intervention took place—the men were not told to do anything special.*

8. (b) (2 points) Based on the information you have, is it a cross-sectional study or a longitudinal study? Circle your answer and explain briefly.

- **Cross-sectional study**

1. *There is no indication that the men had to provide more than just one sample, i.e., there is no indication that these men were followed over time.*

12. (c) (3 points) From a statistical point of view, why did the men need to provide the additional information relating to lifestyle, diet, medical and occupational details?

- These factors may be confounding factors that could have an effect on the sperm quality.

8. (d) (5 points) Based on the information you have about this study, is the statement “as men age, the quality of their sperm declines” justified? Why or why not? Give two statistical reasons.

1. *No, not justified!*
 - "Correlation is not causation" (but CNN headline suggests causation)<ref>
 - Since this is a cross-sectional study, we do not know whether the sperm quality really declines; other men might have never had a high sperm quality even when they were younger (due to nutrition, etc.).

This study only holds for non-smoking men (at least); we cannot generalize for all men: smoking (induced from amyloid) may immediately affect sperm quality.
2. The regression line for estimating the value of a home from its size (in square feet) has an intercept of $-48,000$ and a slope of 80 per square foot.

(a) (3 points) Explain why it is OK for the regression line to have a negative intercept.

There are no houses with zero square feet in size (if we'd ever try to predict the value for a house that is 1 square foot in size, this would be extreme extrapolation), for houses that are of typical size (a few thousand square feet), the predicted value will be positive, i.e., OK

(b) (3 points) If possible, predict the value of a Cache Valley home that has 3,800 square feet. If this is not possible, clearly explain why not.

\[
\text{possible: predicted value} = -48,000 + 80 \cdot 3,800 = \$256,000
\]

(c) (3 points) If possible, predict the size (in square feet) of a Cache Valley home that is valued at $250,000. If this is not possible, clearly explain why not.

\[
\text{not possible: we only know the regression line for predicting value from size; we have no information how to predict size from value}
\]

\[
\left(\frac{250,000}{80} \right. \text{ does not work here}
\]

3. In one region of Cache Valley there are 41 homes for sale. The average listing price of these homes is $284,822, the standard deviation is $248,968 and the median is $209,000. The most expensive home is listed as $1,599,002. Answers to the following questions are among the 5 choices A,B,C,D and E, and no choice can be used more than once.

\[
\begin{align*}
\text{SD:} & \quad \text{A:}$138,847 \quad \text{B:}$199,450 \quad \text{C:}$251,968 \quad \text{D:}$283,611 \quad \text{E:}$293,466 \\
\text{median:} & \quad \text{all 41 homes:} \quad 41 \cdot 248,968 = 11,070,772 \\
\text{avg:} & \quad \text{of 40 homes (most expensive excluded):} \quad 11,070,772 - 1,599,002 = 10,071,770 \\
\end{align*}
\]

(a) (3 points) If we excluded the most expensive home, the average of the other 40 homes would be A,B,C,D,E (circle which one).

(b) (3 points) If we excluded the most expensive home, the standard deviation of the other 40 homes would be A,B,C,D,E (circle which one).

(c) (3 points) If we excluded the most expensive home, the median of the other 40 homes would be A,B,C,D,E (circle which one).

4. (8 points) Cache Valley homes have an average size of 2,623 square feet and an SD of 1,000 square feet. I plan to take a simple random sample of 500 Cache Valley homes. If possible, find the chance that the sample average will be more than 2,650 square feet. If this is not possible, clearly state why not.

\[
\begin{align*}
\text{possible:}\quad \text{ave avg:} & \quad 2,623 \\
\text{ave SD:} & \quad 1,000 \\
\# draw: & \quad 500 \\
\end{align*}
\]

\[
\begin{align*}
\text{SE}_{\text{sum}} & = \sqrt{500 \cdot 1,000} = 22.361 \\
\text{SE}_{\text{avg}} & = \frac{22.361}{500} = 44.7 \\
\end{align*}
\]

\[
\begin{align*}
\text{sum:} & \quad 2,623 - 2,650 = \frac{27}{44.7} = 0.60 \\
\text{a} & \quad \text{area above 0.60:} \quad 100\% - 45.16\% = 27.4\% \\
\end{align*}
\]
5. A drawer of socks contains 24 socks of which 5 are black, 10 are blue, and 9 are green. In the dark, a child chooses two socks at random to wear to school.

(a) (2 points) What is the chance that the first sock is green?
\[
\frac{9}{24} = 0.375 = 37.5\%
\]

(b) (2 points) What is the chance that the second sock is green?
\[
\frac{9}{24} = 0.375 = 37.5\% \text{ (we don't know anything about the first sock)}
\]

(c) (2 points) What is the chance that the first sock is blue or black?
\[
\frac{10}{24} \quad \frac{5}{24} = \frac{15}{24} = 0.625 = 62.5\%
\]

(d) (2 points) What is the chance that both the first sock and the second sock are not green?
\[
\text{first not green: } \frac{15}{24} \quad \text{second not green: } \frac{14}{23}
\]
\[
\frac{15}{24} \times \frac{14}{23} = \frac{210}{552} = 0.380 = 38.0\%
\]

(e) (2 points) What is the chance that at least one of the socks is green?
\[
1 - \frac{210}{552} = \frac{342}{552} = 0.620 = 62.0\%
\]

6. (10 points) On April 7, 2003, *Time*, page 72, reported the following numbers:

24,645 civilians have been immunized against smallpox

2 of these civilians have died from the vaccine

Suppose a Federal health agency plans to vaccinate all civilians against smallpox. If possible, find a 95% confidence interval for the percentage of all civilians who would die from the vaccine. If it is not possible to construct a valid confidence interval, clearly state all the reasons why not.

not possible: 2 main reasons:

- it is very unlikely that these 24,645 civilians that received the vaccine have been selected via a random sample; these people do not represent the entire population (i.e., all civilians); among these 24,645, there probably won't be too many children, elderly people with other diseases, more likely, there are people working in a medical field (e.g., doctors, nurses, etc.)

- the sample % is \(\frac{2}{24,645} = 0.000081 = 0.0081\% \)

which is very close to 0% and does not allow the construction of a valid CI
7. (10 points) A simple random sample of 10 people over age 85 take a memory test. The average score for these 10 people is 82.5, with a standard deviation of 8.6. For the general population, the average score is known to be 92.3. Test to see whether this is evidence that people over 85 score lower than the general population, and clearly state any assumption(s) that you need to make in order to perform the test.

\[t = \frac{82.5 - 92.3}{2.88} = \frac{-9.8}{2.88} = -3.4 \]
\[df = 10 - 1 = 9 \]

-3 if null, alt. SO for be unknown
-1 null: people over 85 on avg have the same score, i.e., \(\mu_{85} = 92.3 \)
-2 alternative: people over 85 on avg have a lower score, i.e., \(\mu_{85} < 92.3 \)
-4 if null, alt. untested
-3 t-curve
-4 reject the null
-3 result is highly statistically significant (p-value < 0.01)
-3 people over 85 on avg have a lower score

8. (12 points) The following table describes types of collisions in rural and urban settings, for a random sample of two-vehicle accidents that occurred in a given region last year. Carry out an appropriate test of significance to decide whether the type of collision is independent of whether the accident took place in a rural versus an urban setting. Is the result statistically significant? Is it highly statistically significant? What are your conclusions?

<table>
<thead>
<tr>
<th>TYPE OF COLLISION</th>
<th>angle</th>
<th>rear-end</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>40</td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td>Rural</td>
<td>6</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>42</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>33</td>
<td>175</td>
</tr>
</tbody>
</table>

\[\chi^2 = \sum \frac{(o-e)^2}{e} = \frac{(40-37)^2}{37} + \frac{(30-34)^2}{34} + \frac{(72-71)^2}{71} + \frac{(12-8)^2}{8} + \frac{(15-16)^2}{16} = 3.79 \]

\[df = (2-1) \cdot (3-1) = 2 \]

-3 if null, alt. untested
-1 null: setting and type of collision are independent, i.e., boxes are identical
-3 alternative: setting and type of collision are not independent (type of collision depends on setting), i.e., at least one box is different

\[\chi^2 \]
from \(\chi^2 \)-table: 3.79 between 2.41 and 4.60
p-value between 10% and 30%

-4 do not reject the null
-5 setting and type of collision are independent

\[6 \times 2 = 12 \]
9. (12 points) Four hundred volunteers agree to participate in clinical trial involving a dietary intervention. The investigators want to check how representative this sample is of the general population. One interesting finding is that 40 of the 400 volunteers are current cigarette smokers. Assume that 30% of the general population are current smokers. State the hypotheses needed to test whether the volunteer group is representative of the general population regarding cigarette smoking, compute a test statistic and a P-value and clearly state your conclusion.

\[
\begin{align*}
&\text{1.}\ \text{null: } \text{volunteer group is representative of entire pop, i.e., vol } \% = 30\% \\
&\text{alternative: volunteer group is not representative of entire pop, i.e., vol } \% \neq 30\% \\
&\text{2. } \text{SE}_{\text{sum}} = \sqrt{400 \cdot 0.46} = 9.2 \\
&\text{SE}_{\%} = \frac{9.2}{400} = 0.0023 = 2.3\% \\
&\text{obs } \% = \frac{40}{400} = 0.1 = 10\% \\
&\text{exp } \% = 0.3 = 30\% \\
&z = \frac{0.1 - 0.3}{0.0023} = -8.7 \\
&\text{3. } \text{off the z-table} \\
&\text{4. } \text{reject the null} \\
&\text{5. result is highly significant (P-value < 1%)} \\
&\text{6. } \text{the volunteer group is not representative of the entire population}
\end{align*}
\]

10. In an article published in The New England Journal of Medicine, April 24, 2003, researchers looked at over 900,000 men and women. The article concludes:

Increased body weight was associated with increased death rates for all cancers combined and for cancers at multiple specific sites.

On the CNN web site it claims: “Researchers say fat causes 90,000 U.S. cancer deaths a year”

(a) (3 points) What mistake did the CNN journalist make? Briefly explain using statistical terminology and concepts.

The CNN journalist mixed up "association" and "causation"; association is not the same as causation; perhaps people with an increased body weight exercise less or they eat unhealthier food and these (or other) confounding factors also contribute to a higher cancer rate.

(b) (5 points) Suppose the researchers looked at 50 different kinds of cancer, and found a P-value for testing the null hypothesis that the cancer is unrelated to body weight versus the alternative that the cancer is associated with body weight. They found 9 statistically significant P-values. Explain why we should be cautious in concluding that all 9 of these are true associations.

If we do a test, even if the null hypothesis is true, we have a 5% chance of rejecting the null hypothesis just by chance. If we do 50 tests, we would expect to reject 50 \times 0.05 = 2.5 of our null hypotheses just by chance.

We found 9 statistically significant P-values; so none of these might indeed represent true associations while others are based on chance.