Correcting for Spatial Variations in the Population at Risk Using S-Plus and SPLANCS

> STAT 5810 - PROJECT 1 Group 2 Mingyo Chung, Katya Saraeva Guy Serbin, Vasile Turcu Tong Yin, Jinsheng You

Background

- In the epidemiological cases, the occurrence of diseases is
 expected to vary with the population density.
- When natural spatial variation in background population exists, instead of comparing the disease occurrence with a CSR process, we test the clustering hypothesis against a heterogeneous Poisson process with varying intensity λ(s),
 e.g, background population, another type of events within the same area.

Data

- Data set: larynx and lung cancers of Lancashire in Britain
- The data set consists of five columns of numbers: easting, northing (define the locations of events), Population (expressed as number of people), Lung cancer, and Larynx cancer (1.00 represents occurrence, -999.00 means no data or non-occurrence) of Lancashire.
- Number of cases of lung cancer: 917
- Number of cases of larynx cancer: 57 (from 1974-83)

Symbol Map of Population Distribution

File Edit Data Map Overlay Analysis Preferences Setup Help	
	1467. to 2497. 2497. to 3347. 3347. to 4198. 4198. to 5048. 5048. to 5898. 5898. to 7713.

Superimposed Dot Map of Lung Cancers on Population Map

Superimposed Symbol Map of Larynx Cancers on Population Map

File Edit Data Map Overlay Analysis Preferences Setup Help

Using "Cases" and "Controls"

- One task is to test whether the larynx cancers show any clustering relative to the lung cancers.
- A 'control' process is used as a surrogate to 'mimic' the variations in population at risk, in this case, lung cancer events are the '*controls*'.
- The larynx cancers are the 'cases'.
- '*Cases*' is tested against '*controls*'.

Random Labeling Hypothesis

- We have n_1 number of 'cases', n_2 number of 'controls' within a study region *R*. Then $n=n_1+n_2$ is the total number of two types of events in *R*, which are 'cases' and 'controls'.
- If there is no clustering of 'cases' relative to 'controls',
 then the 'cases' is just a random sample from the pattern of both cases and controls.
- The hypothesis now becomes: random 'labeling' of cases and controls (the marking of events is independent of their locations and is a uniform distribution over the number of types of events)

Using K functions

- K functions is a measure of the *reduced second moment* of the observed process.
- We use *K* functions to examine the random 'labeling' hypothesis.
- Under random 'labeling' the pattern of either the 'cases' or the 'controls' taken separately represents random 'thinning' of the combined spatial point process.
- K functions are invariant under random 'thinning', it follows that under random 'labeling', we have, $K_{11}(h) = K_{22}(h) = K_{12}^{\dagger}(h)$

Plotting

- Therefore, the plot of $\widehat{K}_{11}(h)$ $\widehat{K}_{22}(h)$ against *h* tells if there is departure from random labeling.
- Positive peaks represent spatial clustering of cases over and above the natural environmental spatial clustering of controls.
- Upper and lower simulation envelops for assessing the significance of the peaks are generated in repeated simulation using the fixed n_1+n_2 locations but randomly assigning '*case*' labels to n_1 of these locations.

Plot of difference between K functions for larynx and lung cancers

The plot shows
that the larynx
cancers are
slightly more
dispersed than the
lung cancers.