Visual Data Mining - Techniques and Examples

Jürgen Symanzik
Utah State University, Logan, UT

e-mail: symanzik@sunfs.math.usu.edu

WWW: http://www.math.usu.edu/~symanzik
Contents

- Visual Data Mining
 - Definitions
 - Software
 - Techniques

- Examples
 - Archaeological Data
 - Human Motion Data
 - Neuroanatomical Data
Ed Wegman:

“Data Mining is Exploratory Data Analysis with Little or No Human Interaction using Computationally Feasible Techniques, i.e., the Attempt to find Interesting Structure unknown a priori”
Working Definition:

- Find structure (cluster, unusual observations) in large and not necessarily homogeneous data sets based on human perception using graphical methods and user interaction
- Goal or expected outcome of exploration usually unknown in advance
First uses of the term:

Software: XGobi/ggobi
Swayne, Cook and Buja

• Interactive environment for exploring multivariate data
 * Linked views allow “linked brushing”
 * Univariate, Bivariate and Multivariate views of the data
 * Grand tour
 * Wide variety of methods
 * Open source
 * Free

• Caveats
 * XGobi only on UNIX and Linux platforms
 * ggobi also available for PCs but not yet fully developed
Software: ExplorN
Carr, Wegman, Luo

• Interactive environment for exploring multivariate data (similar to XGobi)
 * Advanced Parallel Coordinates Displays
 * 3D Surfaces
 * Stereoscopic Displays

• Caveats
 * Only on SGI platforms
 * No interface
Tools: Linked Brushing

XGobi
Tools: Scatterplot Matrix

ExplorN
Tools: Grand Tour

– Continuous random sequence of projections from n dimensions into 2 (or more) dimensions.
Examples

- Archaeological Data
- Human Motion Data
- Neuroanatomical Data
Example: Archaeological Data

Published as:
Oronsay Sand Particles

“The mesolithic shell middens on the island of Oronsay are one of the most important archeological sites in Britain. It is of considerable interest to determine their position with respect to the mesolithic coastline. If the sand below the midden were beach sand and the sand from the upper layers dune sand, this would indicate a seaward shift of the beach-dune interface.”

Flenley and Olbricht, 1993
Objective of Study

- Cluster samples of modern sand into “beach-like” or “dune-like” sand.
- Classify archeological sand samples as to whether they are beach sand or dune sand.
Oronsay - Geography
Oronsay - Data Problems
Historical strategy is to fit parametric distributions and compare modern and archeological sands based on parameters.

- Models 2 to 4 parameters, theory developed, practice problematic.
Oronsay - Visual Approach

- **Multidimensional Parallel Coordinate Display Combined with Grand Tour.**

- **BRUSH-TOUR strategy**
 - Clusters recognized by gaps in any horizontal axis.
 - Brush existing clusters with colors.
 - Execute grand tour until new clusters appear, brush again.
 - Continue until clusters are exhausted.
Beach & Dune Sand
Separation of Clusters

ORON SAW CC DATA

RED

BLUE

MAGENTA

CYAN

YELLOW

GREEN

GREEN

GREEN

GREEN
Final Clustering
Scatterplots & Projection
Sands from the CC site and the CNG site have considerably different particle size distributions and cannot be effectively aggregated.

Data at small and at large particle dimensions is too quantized to be used effectively.

The visual based BRUSH-TOUR strategy is extremely effective at clustering.
Midden sands are neither modern beach sands nor modern dune sands.

Midden sands are more similar to modern dune sands.

This result does not support the seaward-shift-of-the-beach-dune-interface hypothesis, but suggests the middens were always in the dunes.
Example: Human Motion Data

Published as:
Purpose of Experiments

- Rehabilitation of people after accidents
- Knowledge of adaptation of humans to perform mechanical tasks, e.g., arm movement
- Perfection of movements
 - Dancers
 - Ski jumpers
 - Piano players
Aim of Preliminary Experiments

- Get used to Sensors & other Hardware.

- How does Visualization help to understand the data?

- Need: Visualization during Experiments
 - Complicated setup - impossible to redo once finished
 - Data plausible?
 - Data correctly recorded?
Data Collected

- Small to Medium Size Data Set:
 - 60 to 100 Hz
 - 30 to 120 sec
 - 6 x 3 FOBs sensors
 - Here: 25,000 to 40,000 Measurements
Timeseries Plots (S-Plus)

Circle Test - Horizontal

Hand-x

Hand-y

Hand-z

Foresom-x

Foresom-y

Foresom-z

Biceps-x

Biceps-y

Biceps-z
Circle Test - Angular

Hand-x

Hand-y

Hand-z

Forearm-x

Forearm-y

Forearm-z

Bicep-x

Bicep-y

Bicep-z
Density Plots (ExplorN)
Scatterplots and Rotation (XGobi)
Motion - Conclusions

- Visualization helps to immediately check the correctness of the data.
- Realistic 3D Visualization helps to detect unexpected behavior.
Example: Neuroanatomical Data

Published as:
Pyramidal Brain Cells
Morphological Parameters

- **Apical Dendrite**
- **Basal Dendrite**
- **Distance from Soma**
 - 50 um
 - 100 um
 - 150 um
 - 200 um
 - Entire Dendrite Tree
- **Length**
- **Diameter**
- **Area**
- **Asymmetry**
- **Bifurcations**
- **Terminations**
Aim of the Study

- Study the function of neurons by injecting current into a neuron and measure the neuron’s response
- Here: Computational Simulator
- 16 sets of morphometric data used
- About 3 hours of computer time for 5 sec of neuron time on SGI Origin 200
- 10 injected currents per cell: 0.1 nA to 1.9 nA
Simulation

Simplified Model of Pyramidal Brain Cells

Recording of Current (Soma)

Injection of Current (Soma)

Recording of Current (Apical Dendrite)

Current Measurements

Basal Dendrite

Apical Dendrite

Soma (Cell Body)
Simulated Physiological Response under 0.7 nA
Response Parameters

- **Spiking:**
 - Spike Rate (Hz)
 - Spike Transition (nA)

- **Bursting:**
 - Burst Rate (Hz)
 - Interburst Interval (sec)
 - Spikes per Burst (Hz)

- **Plateau:**
 - Plateau Range (nA)
 - Plateau Rate (Hz)
 - Interplateau Interval (sec)
 - Spikes per Plateau (Hz)
Influence of Dendritic Area on Firing Rate

Interplateau Interval vs Dendritic Area

Spike Rate vs Dendritic Area

- Smaller cells tend to be more excitable and have higher firing rates.
Visual Data Mining Using XGobi
Visible Patterns
Interplateau Interval vs Dendritic Area ???
Brain Cells - Conclusions

- Visualization suggests which cells to simulate/analyze next.
- Some prior assumptions may not hold or only hold under additional restrictions.
Overall Conclusion

- Visual approach effective to see unexpected structure in data.
- Combination of different techniques most effective.
- Can be used for almost all types of data (another major application: Remote Sensing).
Contact

- Jürgen Symanzik
 - symanzik@sunfs.math.usu.edu
- Website
 - www.math.usu.edu/~symanzik