Dynamic Statistical Graphics in Highly Immersive Environments Jürgen Symanzik, Dianne Cook,

Bradley D. Kohlmeyer, Carolina Cruz–Neira, Uli Lechner

Iowa State University, Ames, Iowa 50011, USA

e-mail: symanzik@iastate.edu

WWW: http://www.public.iastate.edu/~symanzik/papers/papers.html

IOWA STATE UNIVERSITY

July 1996

- Virtual Reality
- Dynamic Statistical Graphics
- DSG in Immersive Environments
- Future Work

VIRTUAL REALITY – DEFINITION

Different understandings of the term VR:

- Pimentel, Teixeira: "Virtual reality is the place where humans and computers make contact."
- Newby: "VR has to do with the simulation of environments."
- Anonymous: "Virtual reality is a media to recreate the world in which we live and to create illusions of new and yet unknown worlds."
- Cruz-Neira: "Virtual reality refers to immersive, interactive, multi-sensory, viewer-centered, three-dimensional computer generated environments and the combination of technologies required to build these environments."

VIRTUAL REALITY – DEFINITION

- Related Terms:
 - Artificial Reality
 - Virtual Environments
 - Cyberspace

VIRTUAL REALITY – HISTORY

IOWA STATE UNIVERSITY

July 1996

IMMERSIVE ENVIRONMENTS – HISTORY

1991 CAVE: Electronic Visualization Laboratory, University of Illinois, Chicago

1996 Iowa Center for Emerging Manufacturing Technology, Iowa State University, Ames

IMMERSIVE ENV'S – TECHNICAL DETAILS

- Projection–based, uses
 - 3D computer graphics
 - Position tracking
 - Auditory feedback

Projections onto three side walls and floor

- Floor print of 12 x 12 feet
- Height of 9 feet

IMMERSIVE ENV'S – 3D ILLUSION

- Created through LCD shutterglasses and high-performance SGI graphics computers
- Alternating left and right eye viewpoints at 96hz
- User's brain combines two views into 3D stereoscopic image
- Position and orientation of user's hands and head determined through magnetic based tracker, cyberglove, and hand-held wand
- >
- Audio feedback through multiple speakers

IMMERSIVE ENV'S AND OTHER VR DEVICES

- Easy to learn
- High resolution
 - Full field–of–view
 - Visual acuity
 - Lack of intrusion
- Lightweight and unrestrictive equipment to be worn
- User's hands and body are in the environment and don't have to be drawn

IMMERSIVE ENV'S AND OTHER VR DEVICES

- Multiple viewers can share the same virtual environment at the same time for collaborative work
- New user can join a guide (expert navigator) to get introduced to the problem

IMMERSIVE ENV'S – APPLICATIONS

Outside DSG:

(real) 3-dimensional data that is modeled, i. e.,

- Architectural walk throughs
- Molecular modeling
 - Viewing the solar system
- DSG:
 - Interaction with high-dimensional data
 - Not 3-dimensional, but p-dimensional data

DSG – EXAMPLES

- (Multiple) low-dimensional views
- High-dimensional rotation and interaction
 - Brushing / linked brushing

<u>DSG IN IMMERSIVE ENV'S – IDEAS</u>

- 1–, 2–, or 3–dimensional projections
 of p–dimensional data
- Viewing data in form of point clouds or modeled surfaces
 - Multiple views or continuous sequence of views
 - New user interface
 - Most DSG programs: like a desktop
 - Immersive environment: whole room for data analysis

DSG IN IMMERSIVE ENV'S – TOOLS

- Viewing box
- Speed pole
- Variable spheres
 - Goody boxes
- Glyph types

IOWA STATE UNIVERSITY

DSG IN IMMERSIVE ENV'S – APPLICATIONS

Map view and 3-dimensional point cloud of "places data" (Boyer & Savageau, 1981)

3-dimensional grand tour of 6-dimensional cube

July 1996

SOME THOUGHTS

- Huge potential for data analysis
- Much more than gain of one additional dimension of viewing space
 - Ideal for geographically referenced data
 - New and unexpected problems to be solved

FUTURE WORK

- 3D menus
- What to do with brushes
- How to place objects (e.g., maps)
- Sound (e.g., voice identification of points)
- Inclusion of maps and geographic information for spatial data (e.g., satellite images)
- Connections to supercomputers for processing of massive data

ADDRESSES FOR CORRESPONDENCE

- Jürgen Symanzik: symanzik@iastate.edu
- Dianne Cook: dicook@iastate.edu
- Bradley D. Kohlmeyer: mink@iastate.edu
 - Carolina Cruz–Neira: carolina@icemt.iastate.edu
 - Uli Lechner: uli@iastate.edu