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Abstract

Little is known about the in
uence of morphological
variablity on the physiological response of brain cells. It
is assumed that variables such as the number of branch-
ing points in the cell tree{like structure, its area and the
change in shape from soma to terminals may in
uence
the neuron behavior di�erently under di�erent electric
stimulation.
In laboratory experiments, it is di�cult to separate

the electrophysiological e�ects of biochemical di�erences
(i. e., channel types and their distributions) from those
of the morphological di�erences in a neuron's behavior.
Therefore, we have used computer simulations of 3D neu-
roanatomical data of hippocampal cells while keeping
the electrophysiological model constant across di�erent
neurons. This allowed us to look speci�cally at the mor-
phological in
uence on the neuronal function.
We have obtained neuroanatomical data (particu-

larly, hippocampal pyramidal cells) from public elec-
tronic archives. Because of the amount of painstaking
work to reconstruct the three{dimemsional structure of
a neuron, these archives tend to be very small (ranging
from 3 to 50 cells). Additionally, there is the possibility
that di�erent archives have signi�cant morphological dif-
ferences due to the reconstruction technique. Therefore,
it is di�cult to reach robust conclusions on the relation-
ship between morphological parameters and electrophys-
iological output.
However, we found that visual data mining techniques

combined with computational neural modeling is a very
e�ective way to detect some structure in the data. There
are, indeed, morphological variables that can be used to
determine whether hippocampal pyramidal cells spike,
burst, or have a plateau in response to a given level of
input current.

1 Introduction

Despite general agreement among neuroscientists that
dendritic morphology plays an important role in shap-
ing cellular physiology, a quantitative analysis of this
role has been lacking. Because the task of neurophysi-

ologists, who study the function of neurons by injecting
current or voltage into a neuron and measuring the neu-
ron's response, is painstaking and slow, the number of
neurons that can be measured in a given preparation
is restricted. Often, the electrophysiological responses
are recorded, but the neuromorphological data is not
mapped. Alternatively, in a neuroanatomical study, the
cell architecture is carefully mapped, but the electro-
physiological data is not always recorded.
The goal of this paper is to show how visual data min-

ing techniques can be used to explore the neuromorpho-
logical e�ects on the electrical response of neurons. We
are applying a computational approach to obtain our
data. The procedure is to use three{dimensional neu-
roanatomical data, take morphological measurements
from the data, convert the data into a form that can be
used by a computational simulator, and test the phys-
iological response of the simulated neuron. The neu-
roanatomical data is acquired from public archives. Data
consist of rat CA3 hippocampal pyramidal cells (see Fig-
ure 1, right, for three such cells) from the Southamp-
ton archive (http://www.neuro.soton.ac.uk, Turner
et al., 1995). After the simulation, we use XGobi
(Swayne et al., 1998) as a visual data mining tool to
verify our main hypothesis that neuromorphology shapes
neurophysiology. It is expected that di�erences in physi-
ological response or in �ring behavior (i. e., regular spik-
ing, bursting, or plateau potentials) observed within a
neuronal family (i. e., CA3 pyramidal cells) can be, in
part, attributed to variations in dendritic morphology.
In Section 2 of this paper, we provide a short back-

ground on the electrophysiology and the anatomy of
hippocampal pyramidal cells. Section 3 describes the
simulation studies. We explain our visual data mining
approach in Section 4. We end with a discussion and
outlook on future work in Section 5.

2 Neurobiological Background

2.1 Hippocampal Pyramidal Cells

Pyramidal cells are the principal cells of the hippocam-

pus proper, a portion of the brain present in all mam-



mals. In many species (including rats and humans), the
hippocampus has been involved with memory formation.
Pyramidal cells have been the focus of a huge number of
neuroscienti�c reports in the last decade. Particularly,
CA3 pyramidal cells are part of a highly interconnected
network. These neurons receive all their excitatory input
through their dendrites, specialized branching structures
stemming out of their cell bodies. Pyramidal cells have
two types of dendrites, called basal and apical dendrites,
which stem from two opposite parts of the cell body. It
is believed that basal and apical dendrites carry di�er-
ent information to the soma. They are also known to
have di�erent biochemical and connectivity properties.
Typically, a CA3 pyramidal cell has one (or rarely two)
apical dendrite(s) and several (2{7) basal trees.

2.2 Electrophysiological Parameters

When a pyramidal cell is excited (for instance by in-
jecting electrical current into its cell body with an elec-
trode), it can react in four di�erent ways (see Figure 1):
(1) it remains \silent" (i. e., no response at all); (2) it
emits a series of regular, nearly equidistant action poten-
tials (\spikes") (see Figure 1, top); (3) it emits a series of
spike trains (\bursts"), i. e., groups of spikes separated
by silent periods (see Figure 1, center); (4) it emits a
series of \plateau" bursts, where no spike within a train
ever goes back to the baseline before the following spike
is �red (see Figure 1, bottom). These modes of behavior
can each be described by a certain number of parame-
ters. Spiking neurons can be characterized by the fre-
quency of spiking; bursting and plateau neurons can be
characterized by their spike frequency within a train, by
the inter{train interval, and by the length of the trains
(number of spikes per train, or duration). Typically,
as more current is injected into a cell, a cell may tran-
sition directly from being silent to spiking (these cells
are called \spikers", e. g., cell 1 in Figure 2 (a)); or
from silent to bursting to spiking (\bursters", e. g., cell
5 in Figure 2 (a)); or from silent to plateau to spiking
(\plateau", e. g., cell 8 in Figure 2 (a)). Eventually, at
a high enough value of injected current, all cells spike.
The same neuron does not usually display both bursting
and plateau behavior. Thus, being a spiker, or a burster,
or a plateau neuron seems to re
ect a qualitative �ring
mode. The electrophysiological behavior of these neu-
rons can be thus further characterized by the miminum
amount of current necessary to make the neuron �re in
any �ring mode, or by the threshold necessary to bring
the neuron into spiking mode. Within a certain �ring
mode, a higher injected current implies a higher �ring
frequency (see Figures 2 (b), (c), and (d)). The change
of quantitative electrophysiological parameters (such as
spiking frequency) with change in injected current can

Figure 1: Firing behavior (left) and morphology (right) from
cells l16, a \spiker", l71, a \burster", and l64, a \plateau" cell
from the Southampton archive.

itself be considered a quantitative electrophysiological
parameter.

2.3 Morphological Parameters

A parameter that characterizes neuronal morphology,
such as dendritic path length, is de�ned as a morpho-
metric parameter. We have identi�ed a set of such pa-
rameters that can be useful in describing and compar-
ing morphological di�erences between cell families and
within cell families (Ascoli et al., 1997; Ascoli et al.,
1998). Examples of these parameters are:

� Average diameter of dendritic branches. This can
be measured over the entire dendritic tree or in a
speci�c portion (e. g., within a certain distance from
the soma).

� Mean path length. The average distance from a
termination point down to the stem of a dendrite.
This parameter is correlated with the total dendritic
length via the number of stemming trees and the
tree asymmetry (Larkman and Mason, 1990).

It should be noted that the list from Ascoli et al.
(1997, 1998) only represents a starting point towards
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Figure 2: (a) Firing behavior of 16 cells injected with 10
di�erent levels of current in nA. With an increase in current,
the burst rate (b), plateau rate (c), and spike rate (d) also in-
crease. Bursts were brushed with a �, plateaus were brushed
with a , and spikes were brushed with a +. A small dot was
used when a cell showed no response.

an exhaustive morphometric characterization of neuritic
shape. In addition to considering the apical, basal, and
both trees for a cell, we also consider morphological pa-
rameters in proximity to the soma, i. e., apical, basal,
and both trees cut at 50�m, 100�m, 150�m, 200�m,
and not cut at all.

3 Simulation Studies

3.1 Known Results

While it is obvious that changes in the concentration
and distribution of ionic currents can have a strong in-

uence on neuronal response, it is still an open question
as to how much e�ect morphological di�erences have on
neuronal function and what morphological characteris-
tics are the most in
uential on neuronal function. In
general, smaller cells tend to be more excitable and have
higher �ring rates. This agrees with our �ndings (Krich-
mar et al., 1999; Washington et al., 1999; see also Figures
3 (d) and 4 (left) where cells l18 and l60a that have a
large total area spike at a very low rate).

Based on literature reports, morphometric parameters
that re
ect size, such as dendritic path length and sur-
face area, are expected to correlate sensitively with quan-
titative electrophysiological parameters (e. g., Larkman
et al., 1992; Mainen and Sejnowski, 1996). Bilkey and

Schwartzkroin (1990) showed that CA3 pyramidal cells
tended to burst as the length of the apical dendrite in-
creased. Our preliminary results concur with many of
these previous results; but also indicate that other mor-
phometric parameters in proximity to the soma, such
as branching characteristics (e. g., number of branches,
branch order for termination points or branch order for
segment length) have a signi�cant e�ect on the neuron's
�ring mode and this in
uence needs to be investigated
(Krichmar et al., 1999; Washington et al., 1999).

3.2 The Experimental Setting

We started our investigation of how neuromorphol-
ogy in
uences neurophysiology by examining 16 CA3
pyramidal cells. Simulations were run using the GEN-
ESIS software package (Bower and Beeman, 1994) as
previously described (Krichmar et al., 1999). Brie
y,
neuroanatomical models consist of a list of compart-
ments. Each compartment, which maps to a piece of
the neuron's dendritic tree, has a coordinate in 3D space
and a diameter. Within each compartment, equations
that describe the di�erent ionic currents in the neu-
ron are added. We took these equations from an es-
tablished model of the CA3 pyramidal cell (Traub et
al., 1994). The neuroanatomical �les were taken from
the Southampton archive and were converted into a
GENESIS cell descriptor �le. The distribution of mem-
brane properties and active conductances taken from
Traub's model were added to the cell descriptor �le and
adapted to take the realistic morphology into consider-
ation (Krichmar et al., 1999). The correctness of the
model was veri�ed by comparing responses of two of the
cells (l51 and l56a) to injected somatic current with re-
sults from Traub's model and electrophysiological exper-
iments (Hablitz and Johnston, 1981).

In the simulation, cells were injected with current at
the soma for �ve seconds. The level of current ranged
from 0.1 nA to 1.9 nA by steps of 0.2 nA. Membrane
potential was recorded at the soma. It is apparent that
qualitatively di�erent �ring modes may be distinguished.
Neurons can be spiking (e. g., cell l16), bursting (e. g.,
cell l71), or demonstrating a plateau potential (e. g., cell
l64) (see Figure 1). Quantitative di�erences were also
observed among neurons displaying the same �ring mode
at a given level of injected current.

The physiological response of each simulated neuron
(e. g., spike frequency, interspike interval, bursting vs.
non{bursting) to injected current was measured. The
e�ect of morphometric parameters on physiological re-
sponse was systematically analyzed.
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Figure 3: (a) A scatterplot of basal diameter (within a
distance of 100�m of the soma) and maximum basal path
length (for the entire cell) provides a possible classi�cation
for plateaus, bursts, and spikes. (b) When looking at the
basal diameter for the entire tree, no such clear classi�cation
is possible. Cells l18 and l60a are considered as outliers in
(a) and (b). They transition from silent to spiking at 0.7nA
(c) and maintain a low spiking rate at higher current levels
(d).

4 Visual Data Mining in XGobi

4.1 Introduction to Visual Data Mining

The idea to visually explore data through computer
software dates back to PRIM-9 (Picturing, Rotation, Iso-
lation and Masking in up to 9-dimensions; Fisherkeller
et al., 1974a; Fisherkeller et al., 1974b), which is the
landmark example of early dynamic statistical graphics.
Current state of the art technology for visual data min-
ing is available in dynamic statistical graphics packages
such as ExplorN (Carr et al., 1997) which is freely avail-
able from ftp://www.galaxy.gmu.edu/pub/software/

and XGobi (Swayne et al., 1998) which is freely
available from http://www.research.att.com/areas/

stat/xgobi/. Main di�erences between these two pack-
ages are that XGobi supports features that are best suit-
able for relatively small data sets (as in our case) while
ExplorN supports features best suitable for larger data
sets. We will use XGobi mainly for visual clustering
and classi�cation, through a technique called brush{tour
strategy that can be successfully used in applications as
diverse as human motion data (Vandersluis et al., 1998)
and sand particle size data (Wilhelm et al., 1999). The

brush{tour strategy refers to an alternation of brush-
ing, grand tour (Asimov, 1985; Buja and Asimov, 1986),
brushing, and so on until all interesting results have been
visually revealed. Within XGobi, features such as the
brush{tour strategy and linked brushing in scatterplots
and dotplots have been proven as very successful to de-
tect structure in our morphology data as demonstrated
in the next section.

4.2 Visual Data Mining of Pyramidal Cells

When visually exploring the 16 cells using XGobi, we
initially started by brushing points that had a di�erent
�ring behavior with respect to bursts (�), plateaus ( ),
and spikes (+) (see Figure 2). A small dot was used when
a cell showed no response. Since some cells showed dif-
ferent behaviors under di�erent currents, they may be
marked, for example, as plateaus for one current and
as spikers for another. However, since the underlying
morphological parameters are identical, di�erent sym-
bols were overplotted in some of the graphical displays.
When looking at univariate dotplots only, there was no

single morphological parameter that resulted in a clear
separation of spiker, burster, and plateau cells. How-
ever, while cycling through bivariate scatterplots of the
morphological paramaters, some structure became appa-
rant. It appears that cells with a relatively small basal
diameter (within a distance of 100�m of the soma) and
relatively small maximumbasal path length (for the en-
tire cell) tend to have plateaus. Cells with medium basal
diameter and medium maximumbasal path length tend
to be bursters. Cells with large basal diameter and large
maximum basal path length tend to be spikers (see Fig-
ure 3 (a)). While similar results could be observed for
other small proximities to the soma, there is no such clear
separation when looking at basal diameter for the entire
cell and maximum basal path length (for the entire cell)
(see Figure 3 (b)).
However, Figure 3 (a) also reveals that there are two

outliers, i. e., cells l18 and l60a, that have a small basal
diameter and small maximum basal path length but are
spikers anyway. When labeling these two cells in the
scatterplot of max_b_path vs b_diam (see Figure 3 (a)),
this labeling information is carried over to other linked
XGobi plots. The scatterplot of current vs cell (see Fig-
ure 3 (c)) reveals that cells l18 and l60a immediately
start spiking at a current of 0.7nA while showing no re-
sponse under smaller currents. Figure 3 (d) reveals that
these two cells have spike rates that range among the
lowest spike rates among all cells, independently from
the injected current.
A natural next data mining step is to investigate

whether these two cells have an extreme value in one of
their other morphological parameters that could explain
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Figure 4: Cells l18 and l60a that are considered as outliers
in Figure 3 (a) and (b) have values in the upper range for
total area (left) and total symmetry (right) within a distance
of 100�m of the soma.

their unusual behavior. And as the dotplots in Figure 4
reveal, cells l18 and l60a have values in the upper range
for tot_area (total area), tot_sym (total symmetry),
and total bifurcations (not displayed) within a distance
of 100�m of the soma. Obviously, with only 2 cells, it is
impossible to state if these high values are pure chance
or if one, two, or all three of these parameters (jointly)
cause that these cells immediately spike. Clearly, further
work is needed.

5 Discussion and Future Work

With only 16 cells � 10 di�erent currents = 160 obser-
vations and 7 morphological parameters � 5 proximity
distances (50�m, 100�m, 150�m, 200�m, and no cut) �
3 areas (apical dendrite, basal dendrite, and both trees)
+ 4 parameters for the entire tree = 109 parameters,
it seems to be possible to �t a statistical model that
describes the data very well but has only little practi-
cal meaning. With our visual data mining approach,
we believe that we can visually detect the morphologi-
cal parameters that shape neurophysiology, i. e., a few
(interacting) parameters in small proximity to the soma.

After these successful initial steps in visual data min-
ing of hippocampal neurons, the following future work
is planned: In a �rst step, we plan to attempt to re-
duce and further de�ne the morphometric parameters
that shape neurophysioloy. We plan to exploit a large
set of real anatomical data using our electrophysical sim-
ulations approach. This experiment determines which of
the initially explored morphometric parameters, if any,
a�ect the physiology of hippocampal neurons. Based
on the previous results, we attempt to develop a sta-
tistical model that predicts neuronal function from a
given set of morphometric parameters. Finally, we plan
to test the predictive, statistical models previously de-
veloped on a new set of neuroanatomical data. An
independent set of CA3 pyramidal cell data is avail-

able from the University of California at Davis archive
(ftp://mossycell.ucdavis.edu/public).
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