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1 STOCHASTIC ANALYSIS OF PERIODIC TIMED DATA FLOW

DIAGRAMS WITH MARKOVIAN TRANSITION TIMES

Abstract

Timed (or Stochastic) Data Flow Diagrams (TDFD's or SDFD's) introduced in [SB96b] are an

extension of the Formalized Data Flow Diagrams, de�ned in [LWBL96]. This extension allows us to

assess the quantitative behavior (e. g., performance, throughput, average load of a bubble, etc.) as

well as the qualitative behavior (e. g., deadlock, reachability, termination, �niteness, liveness, etc.),

eventually depending on di�erent types of transition times, for the system modeled through the TDFD.

In this paper, we consider Markovian transition times for the consumption of in{
ow items and for the

production of items on the out{
ow. Moreover, we require the TDFD to be periodic and irreducible

and it must have a �nite reachability set. For these models, we have been able to apply an aggregation

principle of [Sch84], extended for periodic Markov chains by [Woo93], to e�ciently determine stationary

probabilities, expected waiting times, and limiting process probabilities.



2

1.1 Introduction

In [SB96b] we introduced Timed (or Stochastic) Data Flow Diagrams (TDFD's or SDFD's) as an

extension of Formalized Data Flow Diagrams (FDFD's), de�ned in [LWBL96]. In SDFD's, time is

modeled through the de�nition of a stochastic time behavior for the consumption of in{
ow items as

well as a stochastic time behavior for the production of items on the out{
ow. We followed the general

approach of Stochastic Petri Nets given in [MBB+85] when de�ning SDFD's.

In this paper we consider one particular subclass of TDFD's, i. e., those that are periodic, irreducible,

and have Markovian transition times. We call these SDFD's periodic Markovian Timed Data Flow

Diagrams (periodic M{TDFD's). We will demonstrate how stationary probabilities, expected waiting

times, and limiting process probabilities can be derived for M{TDFD's. The periodicity of the Markov

chain, embedded in the Markov process (which is embedded in the given periodic M{TDFD), plays an

important role for a computationally e�cient analysis of interesting questions. This analysis is based

on the aggregation principle of [Sch84]. Similarly, [Woo93] (Chapter 2) used this aggregation principle

and the periodicity of N{stage stochastic service systems (it appears, as pointed out in [Woo93], that

[Pat64] �rst noted this periodicity) to e�ciently derive stationary probabilities and limiting process

probabilities for 3{ and 4{stage Markovian production lines.

Some work has been done to exploit the periodic functioning of Timed Petri Nets. In [Hil90] for

example, results have been obtained for the performance evaluation of multi{stage production systems

where this periodic functioning often occurs. [Yua86] de�nes process periods for Petri Nets and uses

those to describe the system behavior. However, to our best knowledge, there exists no prior approach

to aggregate the state space of periodic Timed Petri Nets or similar computational models in a manner

suggested by the aggregation principle of [Sch84] and the extension for periodic Markov chains by

[Woo93].

The typical two{step �ring behavior of FDFD's has been applied to Timed Petri Nets as well. [RP84]

allocates both an enabling time and a �ring time to each transition. After a transition is enabled, it

has to wait for a time (called the \enabling time") before it absorbs all tokens from its input bag. The

tokens remain absorbed for the \�ring time" after which the transition places tokens in the appropriate

output bag. The idea of alternating enabling and �ring time points is also built into the work of [HT91].

The work presented in this paper can not only be applied to periodic M{TDFD's, but it can be

directly used for the previously described Petri Nets with alternating enabling and �ring time points.

However, since our background is in Software Engineering, in particular in \Structured Analysis" (SA)

(e. g., [DeM78], [WM85a]) where traditional Data Flow Diagrams (DFD's) are probably the most widely
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used speci�cation technique in industry today ([BB93]), we wanted to present our results in this context.

Even though little work has been done on TDFD's to date, we want to encourage the reader to consider

TDFD's as a helpful model for complex time dependend systems. It does not matter for the stochastic

analysis whether the Markov process and Markov chain under consideration result from a TDFD or a

Timed Petri Net. Thus, many known methods and results for the stochastic analysis of Timed Petri

Nets can be directly applied to TDFD's. Moreover, several advantages of TDFD's over Timed Petri

Nets make them the more natural selection for software engineers as it has been pointed out in [SB96b].

The work presented in this paper relates to the new interdisciplinary �eld \Statistical Software

Engineering", introduced in [Nat96]. We use statistical techniques that allow us to reduce computations

when we analyze in the Speci�cations phase of the spiral software development process model ([Nat96],

p. 63) whether quantitative requirements of the software system are ful�lled.

In Section 1.2, we will summarize basic de�nitions required within this paper. Section 1.3 deals with

the characterization of periodic FDFD's. In Section 1.4, we demonstrate how to apply the aggregation

principle of [Sch84] to periodic and irreducible M{TDFD's with �nite reachability set. We conclude

this paper with an overview of future work in Section 1.5.

1.2 De�nitions

1.2.1 Stochastic Data Flow Diagrams

Data Flow Diagrams have been formalized at multiple places within the technical literature, e. g.,

in [DeM78], [WM85a], [WM85b], [Har87], [TP89], [You89], [Har92], and [Har96]. Within this paper,

we make use of the de�nitions of Formalized Data Flow Diagrams (FDFD's) developed by Coleman,

Wahls, Baker, and Leavens in [Col91], [CB94], [WBL93], and [LWBL96]. In particular for our examples,

we use the notation from [LWBL96]. This cited paper also contains a more detailed explanation of the

underlying operational semantics of FDFD's and an extended example.

In addition, we need the following de�ntions from [SB96b]:

De�nition (1.2.1.1): A �ring sequence (computation sequence) of an FDFD is a possibly in�nite

sequence (bi; ai; ji) 2 B�fC;Pg�IN; i � 0; such that, if transition (bi; ai; ji) is �red in state (bm ; r; fs),

then

(fs0; r0) =

8<
: (Consume(bi))ji(fs ; r); if ai = C

(Produce(bi))ji(fs; r); if ai = P
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bm0(bi) =

8<
: working ; if ai = C

idle; if ai = P

bm0(b) = bm(b) 8 b 2 B � fbig

and

(bm; r; fs)! (bm 0; r0; fs0).

We introduce the notation (bm; r; fs)[(b; a; j)] to indicate that transition (b; a; j) is �reable in state

(bm; r; fs) and (bm ; r; fs)[(b; a; j)](bm0; r0; fs0) to indicate that state (bm 0; r0; fs0) is reached upon the

�ring of transition (b; a; j) in state (bm; r; fs).

By induction, we extend this notation for �ring sequences:

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn�1; an�1; jn�1); (bn; an; jn)]

is used to indicate that transition (bn; an; jn) is �reable in state (bmn�1; rn�1; fsn�1), given that

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn�1; an�1; jn�1)](bmn�1; rn�1; fsn�1)

holds. By analogy, we use

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn; an; jn)](bmn; rn; fsn)

to indicate that state (bmn; rn; fsn) is reached upon the �ring of the sequence (b1; a1; j1); : : : ; (bn; an; jn).

De�nition (1.2.1.2): The set of �ring sequences (set of computation sequences, language) of an

FDFD, denoted by FS(FDFD; 
initial), is the set containing all �ring sequences that are possible for

this FDFD, given 
initial = (bm initial; rinitial; fsinitial), i. e.,

FS(FDFD; 
initial) = fs j s 2 (B � fC;Pg� IN )� ^ 
initial[s]g:

By analogy, we de�ne

FSi(FDFD; 
initial) = fs j s 2 (B � fC;Pg� IN )i ^ 
initial[s]g; i � 0;

the set of �ring sequences of length i when starting in 
initial.

De�nition (1.2.1.3): The Reachability Set of an FDFD, denoted by RS(FDFD; 
initial), is the

set of states 
 = (bm ; r; fs) that are reachable from 
initial = (bminitial; rinitial; fsinitial), i. e.,

RS(FDFD; 
initial) = f
 j 
 2 � ^ 9 s 2 FS(FDFD; 
initial) : 
initial[s]
g:
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By analogy, we de�ne

RSi(FDFD; 
initial) = f
 j 
 2 � ^ 9 s 2 FSi(FDFD; 
initial) : 
initial[s]
g; i � 0;

the set of states that are reachable in i steps when starting in 
initial.

De�nition (1.2.1.4): Let EN (
) � B � fC;Pg � IN be the set of transitions that are enabled

in state 
 = (bm ; r; fs), i. e.,

EN (
) = fs j s 2 (B � fC;Pg� IN ) ^ 
[s]g = FS1(FDFD; 
):

Now, we specialize our de�nitions from [SB96b] with respect to Markovian transition times.

De�nition (1.2.1.5): A timed �ring sequence (TFS) of an FDFD with initial state 
initial is a pair

tfs = (s; � ), where s 2 FS (FDFD; 
initial) and � is a non{decreasing sequence (of the same length) of

real non{negative values representing the instants of �ring (called epochs) of each transition, such that

consecutive transitions (bi; ai; ji) and (bi+1; ai+1; ji+1) correspond to ordered epochs �i � �i+1. The

time intervals [�i; �i+1) between consecutive epochs represent the periods in which the FDFD remains

in state 
i (assuming �0 = 0). A history of the FDFD up to the kth epoch �k is denoted by Z(k).

De�nition (1.2.1.6): A Markovian Timed Data Flow Diagram (M{TDFD) is a SDFD with

associated FDFD and initial state 
initial where the selection of the transition that �res is based on the

Race Policy with marginal distributions (that do not depend on state 
 and past history Z)

�i(x) = �i(x j 
; Z) = Exp(x;�i); i = 1; : : : ; j EN (
) j 8
 8Z

and with an initial probability distribution on the Reachability Set RS(FDFD; 
initial). Exp(x;�i)

represents the Exponential distribution with probability density function f(x) = �i exp(��ix)I(0;1)(x)

and cumulative distribution function F (x) = (1 � exp(��ix))I(0;1)(x) for �i > 0.

Because of the memoryless property of the Exponential distribution, we do not have to distinguish

among the possible cases introduced in [SB96b] how to deal with the past history Z. We have the same

behavior for Resampling, Work Age Memory, and Enabling Age Memory.

This de�nition introduces the embedded Markov process of the M{TDFD with a one{on{one mapping

between the discrete state space and the reachability set RS(FDFD; 
initial). We refer to this state
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space together with the rules for state changes (implied by the mappings Enabled , Consume , and

Produce of the M{TDFD) as the embedded Markov chain of the M{TDFD. For the initial probability

distribution on RS(FDFD; 
initial), we assume that Pr(system is in state 
initial at time �0 = 0) = 1.

1.2.2 Periodic Markov Chains

In this section we will summarize de�nitions and theorems on periodic Markov chains given in

[IM76], Chapters 2 and 3. It is assumed that the reader is familiar with the basic notations for Markov

chains.

De�nition (1.2.2.1): A subset, C, of the state space, S is called closed if pik = 0 for all i 2 C

and k 62 C. If a closed set consists of a single state, then that state is called an absorbing state.

De�nition (1.2.2.2): A Markov chain is called irreducible if there exists no nonempty closed set

other than S itself. If S has a proper closed subset, it is called reducible.

De�nition (1.2.2.3): Two states, i and j, are said to intercommunicate if for some n � 0,

p
(n)
ij > 0 and for some m � 0, p

(m)
ji > 0.

Theorem (1.2.2.4): A Markov chain is irreducible if and only if all pairs of states intercommu-

nicate.

De�nition (1.2.2.5): State j has period d if the following two conditions hold:

(i) p
(n)
jj = 0 unless n = md for some positive integer m and

(ii) d is the largest integer with property (i).

State j is called aperiodic when d = 1.

Theorem (1.2.2.6): State j has period d if and only if d is the greatest common divisor of all

those n's for which p
(n)
jj > 0 (that is, d = G:C:D:fn j p

(n)
jj > 0g).

Lemma (1.2.2.7): The state space of a periodic irreducible Markov chain of period d can be

partitioned into d disjoint classes D0; D1; : : : ; Dd�1 such that from Dj the chain goes, in the next step,
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to Dj+1 for j = 0; 1; : : : ; d� 2. From Dd�1 the chain returns in the next step to D0.

Finally, we indicate the following Theorem, introduced as Proposition 6{28 and proved in [KSK76].

Theorem (1.2.2.8): The period of a recurrent chain for the state i is a constant independent of

the state i.

1.2.3 Periodic Formalized Data Flow Diagrams

Similiar to Subsection 1.2.2, we now de�ne related terms for an FDFD with initial state 
initial. It

should be obvious that there exists a one{on{one mapping between the reachability set RS(FDFD; 
initial)

of an FDFD and the discrete state space of a Markov chain. We refer to this state space together with

the rules for state changes (implied by the mappings Enabled , Consume , and Produce of the FDFD) as

the embedded Markov chain of the FDFD.

De�nition (1.2.3.1): A subset C, of the reachability set, RS (FDFD; 
initial), is called closed if

for all 
i 2 C and 
k 62 C there exists no transition s 2 (B � fC;Pg� IN ) such that 
i[s]
k. If a closed

set consists of a single state, then that state is called a deadlock state.

De�nition (1.2.3.2): An FDFD with initial state 
initial is called irreducible if there exists no

nonempty closed set other than RS (FDFD; 
initial) itself. If RS (FDFD; 
initial) has a proper closed

subset, it is called reducible.

De�nition (1.2.3.3): Two states, 
i and 
j 2 RS (FDFD; 
initial), are said to intercommunicate

if for some �ring sequences s and t, 
i[s]
j and 
j [t]
i.

Theorem (1.2.3.4): An FDFD with initial state 
initial is irreducible if and only if all pairs of

states intercommunicate.

Proof: Follows directly from the embedded Markov chain.

De�nition (1.2.3.5): A state 
i 2 RS (FDFD; 
initial) has period d if the following two conditions

hold:

(i) 
i[s]
i does not hold unless s 2 FSn(FDFD; 
i) where n = md for some positive integer m and
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(ii) d is the largest integer with property (i).

Note that the period d of a state 
i is related to the times at which the FDFD might return to state


i. It does not mean that the FDFD with current state 
i can return to this state upon the �ring of ex-

actly d transitions nor does it mean that the FDFD will ever return to this state. Also, we do not have

to de�ne an aperiodic state 
i, where d = 1. This case can never happen as we show in the next theorem.

De�nition (1.2.3.6): An FDFD with initial state 
initial is periodic with period d if all of its

states 
 2 RS (FDFD; 
initial) have period d.

Theorem (1.2.3.7): An FDFD with initial state 
initial is either aperiodic or it is periodic with

period d � 2, where d is even.

Proof: It is impossible that the state does not change upon the �ring of a transition. Even if nothing

is consumed and nothing is produced upon the �ring of a transition, at least one bubble changes its

BubbleMode . Every bubble has to move from idle to working (working to idle) before it can return to

idle (working). Therefore, d � 2. Through the execution of every transition, the BubbleMode of exactly

one bubble is altered. Thus, after an odd number of transitions, at least one bubble has a BubbleMode

di�erent from its BubbleMode in the starting state. Thus, d is even. However, if the FDFD contains a

deadlock state, if it can never return to some previously reached state, or if some states have di�erent

periods, then it is aperiodic.

Corollary (1.2.3.8): An irreducible FDFD with initial state 
initial and �nite reachability set is

periodic with period d � 2, where d is even.

Proof: Since the FDFD is irreducible, it has no deadlock state and all pairs of states intercommunicate.

It is possible to return to any state in RS (FDFD; 
initial). This means, the embedded Markov chain is

recurrent since the state space (the reachability set of the FDFD) also is �nite. According to Theorem

(1.2.2.8), all states have the same period d. But then, as we have seen in the previous Theorem, d � 2

and d is even.

1.3 Characterization of Periodic FDFD's

For the results in Section 1.4 we will assume that a given M{TDFD with initial state 
initial is

periodic, irreducible, and has a �nite reachability set. However, what does a M{TDFD with these
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features look like, what are the necessary criteria it has to ful�ll? To answer these questions, we will

�rst demonstrate the unpredictable behavior of FDFD's in Subsection 1.3.1 and indicate how the period

d can be determined for FDFD's with �nite reachability set in Subsection 1.3.2.

1.3.1 Unpredictable Behavior of FDFD's

As we have seen in [SB96a], FDFD's are computationally equivalent to Turing Machines. This

implies that all interesting decidability problems such as reachability, termination, deadlock and liveness

properties, and �niteness, that are undecidable for Turing Machines are also undecidable for FDFD's.

Unfortunately, the questions whether an FDFD is periodic, irreducible, and has a �nite reachability set

are directly related to these decidability problems.

In the next example, we will see that the question whether an FDFD is periodic, irreducible, and has

a �nite reachability set does not only depend on the structure and the mappings Enabled , Consume,

and Produce, but it depends on the initial state 
initial as well. Moreover, an FDFD with initial state


initial1 might be periodic, irreducible, and might have a �nite reachability set, but the same FDFD

with initial state 
initial2 may not have any of these features.

Example (1.3.1.1): This example shows an FDFD whose features highly depend on its initial

state 
initial.

.....

....

.....

.....
.....
.....
......
......
.......
..........

..........................................................................................................................................................................................
........
.......
......
.....
.....
.....
....
.....
.....
....
. .....

....

.....
.....
.....
.....
......
......
.......
..........

..........................................................................................................................................................................................
........
.......
......
.....
.....
.....
....
.....
.....
....
. .....

....

.....

.....
.....
.....
......
......
.......
..........

..........................................................................................................................................................................................
........
.......
......
.....
.....
.....
....
.....
.....
....
.

.....

....

.....
.....
.....
.....
......
......
.......
..........

..........................................................................................................................................................................................
........
.......
......
.....
.....
.....
....
.....
.....
....
.

.......................
.....
....
.....
.

.....
....
.....
....
....................

...............................................................................................................................................................................................................................................................................................

..........................
.......
.....

.....
......
......
.....
......
......
.....
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
......
.....
......
......
.....
......
......
.....
..

.....
.....
.....
.......................

...............................................................................................................................................................................................................................................................................................

........................
....
.....
....
.

.....
......
......
.....
......
......
.....
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
......
......
.....
......
......
.....
......
......
.....
..

.......
.......
........................

A D C

B

BA BCAB CB

BD DB

Figure 1.1: Example of an FDFD Highly Depending on 
initial.

The mappings Enabled , Consume, and Produce for the FDFD shown in Figure 1.1 are de�ned as:

Enabled (A) = �fs : (:IsEmpty(BA) ^Head(fs(BA)) = d)

Enabled (B) = �fs : (:IsEmpty(AB) ^Head (fs(AB )) = a)

_ (:IsEmpty(CB) ^Head(fs(CB)) = c)
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_ (:IsEmpty(AB ) ^Head(fs(AB)) = a

^ :IsEmpty(CB) ^Head (fs(CB)) = c)

_ (:IsEmpty(AB ) ^Head(fs(AB)) = a

^ :IsEmpty(DB ) ^Head(fs(DB )) = f )

Enabled (C) = �fs : (:IsEmpty(BC ) ^Head (fs(BC )) = b)

Enabled (D) = �fs : (:IsEmpty(BD) ^Head(fs(BD )) = e)

Transition

Consume(A) = �(fs ; r) :

fif (:IsEmpty(BA) ^Head(fs(BA)) = d)

then In(BA; A)(fs; r) (A, C, 1)

�

g

Consume(B) = �(fs ; r) :

fif (:IsEmpty(AB ) ^Head (fs(AB)) = a)

then In(AB ; B)(fs ; r) (B, C, 1)

�,

if (:IsEmpty(CB ) ^Head (fs(CB)) = c)

then In(CB ; B)(fs ; r) (B, C, 2)

�,

if (:IsEmpty(AB ) ^Head (fs(AB )) = a

^:IsEmpty(CB) ^Head(fs(CB)) = c)

then In(AB ; B)(In(CB ; B)(fs; r)) (B, C, 3)

�,

if (:IsEmpty(AB ) ^Head (fs(AB )) = a

^:IsEmpty(DB ) ^Head (fs(DB )) = f )

then In(AB ; B)(In(DB ; B)(fs ; r)) (B, C, 4)

�

g

Consume(C) = �(fs; r) :

fif (:IsEmpty(BC ) ^Head(fs(BC )) = b)

then In(BC ; C)(fs; r) (C, C, 1)

�
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g

Consume(D) = �(fs ; r) :

fif (:IsEmpty(BD ) ^Head (fs(BD )) = e)

then In(BD ; D)(fs; r) (D, C, 1)

�

g

Produce(A) = �(fs; r) :

fif r(A)(BA) = d

then Out(a;AB ; A)(fs; r) (A, P, 1)

�

g

Produce(B) = �(fs ; r) :

fif r(B)(AB ) = a

then Out(b;BC ; B)(fs ; r) (B, P, 1)

�,

if r(B)(CB ) = c

then Out(d ;BA; B)(fs ; r) (B, P, 2)

�,

if r(B)(AB ) = a ^ r(B)(CB ) = c

then Out(e;BD ; B)(fs ; r) (B, P, 3)

�,

if r(B)(AB ) = a ^ r(B)(DB ) = f

then Out(b;BC ; B)(fs ; r) (B, P, 4)

�

g

Produce(C) = �(fs ; r) :

fif r(C)(BC ) = b

then Out(c;CB ; C)(fs; r) (C, P, 1)

�

g

Produce(D) = �(fs ; r) :
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fif r(D)(BD ) = e

then Out(f ;DB ; D)(fs ; r) (D, P, 1)

�

g

We consider three initial states


initial1 = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((a); (); (); (); (); ()));


initial2 = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((aa); (); (); (); (); ()));

and


initial3 = ((idle ; idle; idle; idle); (?;?;?;?;?;?); ((aaa); (); (); (); (); ())):

Note that the only di�erence between these initial states is the number of times the OBJECT \a"

initially appears on 
ow AB. This notation indicates

(bminitial; rinital; fsinital) =

((bm(A); bm(B); bm(C); bm(D));

(r(B)(AB ); r(C)(BC ); r(B)(CB); r(A)(BA); r(D)(BD ); r(B)(DB ));

(fs(AB ); fs(BC ); fs(CB); fs(BA); fs(BD ); fs(DB ))):

For 
initial1, the reachability set RS(FDFD; 
initial1) consists only of the following eight states 
1; : : : ; 
8:

� 
1 = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((a); (); (); (); (); ())) = 
initial1

� 
2 = ((idle;working; idle; idle); (a;?;?;?;?;?); ((); (); (); (); (); ()))

� 
3 = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((); (b); (); (); (); ()))

� 
4 = ((idle; idle;working; idle); (?; b;?;?;?;?); ((); (); (); (); (); ()))

� 
5 = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((); (); (c); (); (); ()))

� 
6 = ((idle;working; idle; idle); (?;?; c;?;?;?); ((); (); (); (); (); ()))

� 
7 = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((); (); (); (d); (); ()))

� 
8 = ((idle; idle;working; idle); (?;?;?; d ;?;?); ((); (); (); (); (); ()))
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At any time during the execution of the FDFD, we have j EN (
i) j = 1; i = 1; : : : ; 8, i. e., the FDFD

behaves deterministically. Therefore, upon the execution of the �ring sequence

s1 = ((B;C; 1); (B;P; 1); (C;C; 1); (C;P; 1); (B;C; 2); (B;P; 2); (A;C; 1); (A;P; 1))

the FDFD returns to 
initial1 when started in 
initial1, i. e., 
initial1 [s1]
initial1 . Trivially, the FDFD

with 
initial1 is irreducible, periodic with period 8, and has a �nite reachability set of size 8.

Now we consider the FDFD with 
initial2. Since only an OBJECT on a 
ow has been repli-

cated but no OBJECT has been removed in comparision with 
initial1, it should be obvious that


initial2 [s1]
initial2 holds. But, is the FDFD with 
initial2 still irreducible and periodic? Consider

s2 = ((B;C; 1); (B;P; 1); (C;C; 1); (C;P; 1); (B;C; 3); (B;P; 3); (D;C; 1); (D;P; 1)):

We have 
initial2[s2]
dead, where 
dead = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((); (); (); (); (); (f )))

denotes a deadlock state. Hence, the FDFD with 
initial2 is not irreducible. 
dead has no period d and

thus the FDFD with 
initial2 is not periodic.

Finally, we consider the FDFD with 
initial3 . Again, one OBJECT on a 
ow has been replicated

twice and no OBJECT has been removed in comparision with 
initial1. We consider s2 �rst. We have


initial3 [s2]
not dead, where 
not dead = ((idle; idle; idle; idle); (?;?;?;?;?;?); ((a); (); (); (); (); (f )))

represents a state that is not a deadlock state. Instead, we have 
not dead[(B;C; 4); (B;P; 4)]
3, where


3 is identical to the state of the same name in RS(FDFD; 
initial1). Once 
3 has been reached, only

those states can be reached that are also reachable for the FDFD with 
initial1. But none of these states

intercommunicates with 
initial3 for example, thus the FDFD with 
initial3 can not be irreducible. We

leave it to the reader to determine whether the FDFD with 
initial3 is periodic and which deadlock

states can possibly be reached. This exmple illustrates how such small changes in the initial state result

in quite di�erent behavior. We leave it to the reader to imagine how inpredictably a more complex

FDFD might behave.

Based on the previous example, it becomes obvious that our initial assumption that the period d (if

the FDFD is periodic at all) might depend on the number of bubbles and 
ows does not hold at all. We

found several examples where the period d is proportional to (2 �#bubbles), allowing each of the bubbles

to alter between idle and working for the same number of times. However, we can not generalize from

these examples to the general behavior of FDFD's. Especially since the period does not only depend

on the structure but on the initial state as well. This is reasonable when recalling the fact that FDFD's

have the same computational power as Turing Machines. Anything can happen.
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1.3.2 Determination of d

As we already pointed out earlier, FDFD's are computationally equivalent to Turing Machines

([SB96a]). Therefore, we can not generally answer the questions whether an FDFD is periodic, ir-

reducible, and has a �nite reachability set. However, we can indicate an algorithm that determines

whether the reachability set is �nite or terminates after a �xed number of steps if the reachability set

has not been fully exploited by then. If the reachability set is �nite, we can determine whether the

FDFD is irreducible, and if so, what period d it has.

First we want to introduce a de�nition from graph theory (e. g., [AHU74], p. 189):

De�nition (1.3.2.1): Let G = (V;E) be a directed graph. We can partition V into equivalence

classes, Vi; 1 � i � r, such that vertices v and w are equivalent if and only if there is a path from v to

w and a path from w to v. Let Ei; 1 � i � r, be the set of edges connecting the pairs of vertices in Vi.

The graphs Gi = (Vi; Ei) are called the strongly connected components of G. Even though every vertex

of G is in some Vi, G may have edges not in any Ei. A graph is said to be strongly connected if it has

only one strongly connected component.

Obviously, the question whether an FDFD with initial state 
initial is irreducible is equivalent to

the question whether its reachability graph is strongly connected.

We can summarize the procedure that eventually returns the period d in four steps:

Step 1 : Determine the reachability set RS (FDFD; 
initial)

This can be done using the following breadth{�rst algorithm:

i = 0; Newi = f
initialg; Reachedi = Newi; Examinei = Newi

while (i � MAXSTEPS and Examinei 6= fg)

f

Newi+1 =
[


2Examinei

RS1(FDFD; 
) % all states reachable in one more step

Reachedi+1 = Reachedi [Newi+1 % all states reached so far

Examinei+1 = Newi+1 �Reachedi % all states not yet examined

i = i + 1

g

if Examinei = fg exit \Reachability set is �nite."

else exit \No solution found."
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We stop if we �nd no solution.

Step 2 : Determine whether the reachability graph is strongly connected

Let G = (V;E) with V = RS (FDFD; 
initial) and E the set of edges implied by the mappings

Consume and Produce be the (directed) reachability graph of the related FDFD with initial state


initial. Let n = number of vertices = j RS (FDFD; 
initial) j and e = number of edges. We can

apply an algorithm that �nds the strongly connected components of G. For example, Algorithm

5.4 in [AHU74], p. 193, performs this task in O(MAX(n; e)) time. We stop if G is not strongly

connected, i. e., if the FDFD with 
initial is not irreducible.

Step 3 : Determine the shortest return path

For every 
i 2 RS (FDFD; 
initial); i = 1; : : : ; n, we determine the shortest path from 
i to 
i with

length di > 0. This can be done applying Dijkstra's Algorithm (e. g., Algorithm 5.6 in [AHU74],

p. 207, or Section 6.4 in [PS82]) to every 
i in time O(n2). We could also use the Floyd{Warshall

Algorithm (e. g., Section 6.5 in [PS82]) that �nds the shortest paths between all pairs of nodes in

O(n3) time.

Step 4 : Determine the period d

According to Corollary (1.2.3.8) the FDFD with 
initial is periodic with period d � 2, where d is

even. We can determine d as G:C:D:fdi j i = 1; : : : ; ng.

Obviously, this 4{step approach is not the most e�cient one. For example, we do not really need

Dijkstra's Algorithm or the Floyd{Warshall Algorithm to determine the shortest path since the cost

for each step is the same, no matter which edge is selected. Moreover, it should be possible to combine

Steps 1 to 3 into a more e�cient algorithm. However, this goes beyond the scope of this paper.

1.4 Analysis of Periodic M{TDFD's

1.4.1 The Aggregation Principle

The idea presented in the following extract from [Sch84] is commonly referred to as the aggregation

principle:

\Let S be a �nite or countably in�nite set and X = fXn;n � 0g a homogeneous irreducible

recurrent Markov chain on S with transition matrix P = (pij). Let S0 be a nonempty subset

of S, and denote by n1; n2; : : : the successive random times at which X is visiting S0. Then
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X0 = fXn1
; Xn2

; : : :g is a homogeneous irreducible recurrent Markov chain on S0 ([KSK76],

p. 1641). Its transition matrix, P 0, is given by

(1:1) p0ij = pij +
X

k2S�S0

pikrkj; i; j 2 S0;

where rkj; k 2 S � S0; j 2 S0, is the probability that X will �rst hit S0 at state j given start

in k. Likewise, p0ij is the probability for X to �rst reenter S0 at j given start in i. If X is

ergodic, so is X0 (but not vice versa). X0 will be said to arise from X by watching X on

S0, only. The equations (1.2) x = xP and (1.3) x0 = x0P 0, x and x0 denoting row vectors,

possess strictly positive solutions p; p0 which are unique up to multiplicative constants, and

for which (1.4) p0i = cpi; i 2 S0, c a constant ([KSK76], p. 1641). The p; p0 shall be assumed

to denote probability vectors in the ergodic case."

1.4.2 Application to Periodic M{TDFD's

As pointed out in [Woo93], in the case of a periodic Markov chain, if S0 is taken as a periodic subset

of S, then the constant c in [Sch84] (1.4) is simply the period d of the Markov chain.

We can summarize the process to analyze a periodic and irreducible M{TDFD of period d with

initial state 
initial and �nite reachability set RS(FDFD; 
initial) in the following algorithm:

(i) Determine the d equivalence classes of states of the FDFD associated with M{TDFD (the periodic

subsets) S1; : : : ; Sd. It is

Sj =

ceil(jRS(FDFD;
initial )j=d)�1[
i=0

RSid+j (FDFD; 
initial); j = 1; : : : ; d;

and

S =
d[

j=1

Sj = RS(FDFD; 
initial):

(ii) Determine P , with columns and rows representing states 
1; : : : ; 
n, n =j RS(FDFD; 
initial) j,

ordered according to the periodic subsets, starting with Sd; S1; : : : ; Sd�1. It is

pij =
�k
mX
l=1

�l

; i; j = 1; : : : ; n;

such that 
i[(bk; ak; jk)]
j and 
i[(bl; al; jl)]; l = 1; : : : ;m, where m =j EN (
i) j and �k; �1; : : : ; �m

are the rates of the Exponential distributions related to the transitions (bk; ak; jk); (b1; a1; j1); : : : ;

(bm; am; jm), respectively.

1The reference [KSK76], p. 164, refers to Exercise 5 on page 164. In addition, the de�nition of PE on page 133 and
Lemma 6{6 on page 134 of the same reference are required to understand the reasoning in [Sch84].
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(iii) Let S0 be any of the periodic subsets S1; : : : ; Sd such that j S0 j�j Sj j 8j = 1; : : : ; d. Let

�S = S � S0. Derive P 0 according to [Sch84] (1.1). rkj, related to states 
k 2 �S; 
j 2 S0, can

be determined via the products of pijs related to a �ring sequence from state 
k to state 
j that

does not reach any other state � 2 S0, summed up over all possible �ring sequences of this type.

Note that all �ring sequences to be considered are those with d � 1 or less steps. Now, solve

x0 = x0P 0 where solutions p0 are strictly positive and can be normalized such that p01 = 1, where

1 represents a vector of all 1's.

(iv) From [Sch84] (1.4) and by using P , we get the stationary probabilities p:

pi =
1

d
p0i 8i : 
i 2 S0

pi =
1

d

X
j:
j2S0

p0jrji 8i : 
i 2 �S

(v) The expected waiting times 	i in the states 
i; i = 1; : : : ; n, can be computed as

	i =
1

mX
l=1

�l

; i = 1; : : : ; n;

where m =j EN (
i) j and �1; : : : ; �m are the rates of the related Exponential distributions (as in

(ii) above).

(vi) Based on the specialisation in [Woo93] for the general case of ergodic stationary semi Markov

processes with countable state space ([AD88]), we can compute the limiting process probabilities

�i = lim
t!1

Pi(t) of the states 
i; i = 1; : : : ; n, i. e., the probability that the system is in the state


i for t!1, as

�i =
pi	i

nX
j=1

pj	j

; i = 1; : : : ; n:

1.4.3 An Example

This example of an M{TDFD represents a Producer/Consumer problem with bounded bu�er of size

2 (Figure 1.2). This means, the Producer can only produce two more items than the Consumer has

consumed.

The mappings Enabled , Consume , and Produce are de�ned as:

Enabled (P ) = �fs : (:IsEmpty(Done) ^Head (fs(Done)) = Yes)

Enabled (C) = �fs : (:IsEmpty(f ) ^Head(fs(f )) = 1)
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Figure 1.2: Example of a Periodic and Irreducible M{TDFD.

Transition Rate

Consume(P ) = �(fs ; r) :

fif (:IsEmpty(Done ) ^Head(fs(Done)) = Yes)

then In(Done ; P )(fs; r) (P, C, 1) �1

�

g

Consume(C) = �(fs; r) :

fif (:IsEmpty(f ) ^Head (fs(f )) = 1)

then In(f ; C)(fs; r) (C, C, 1) �2

�

g

Produce(P ) = �(fs; r) :

fif r(C)(Done) = Yes

then Out(1; f ; P )(fs; r) (P, P, 1) �3

�

g

Produce(C) = �(fs ; r) :

fif r(C)(f ) = 1

then Out(Yes ;Done; C)(fs; r) (C, P, 1) �4

�

g

Initially, we have


1 = 
initial = (bm initial; rinital; fsinital) = ((idle; idle); (?;?); ((); (YesYes))):

This notation indicates

((bm(P ); bm(C)); (r(P )(Done); r(C)(f )); (fs(f ); fs(Done ))):
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The reachability set RS(FDFD; 
initial) consists of the following eight states:

� 
1 = ((idle, idle), (?, ?), ((), (Yes Yes)))

� 
4 = ((working, idle), (Yes, ?), ((), (Yes)))

� 
6 = ((idle, idle), (?, ?), ((1), (Yes)))

� 
7 = ((working, idle), (Yes, ?), ((1), ()))

� 
8 = ((idle, working), (?, 1), ((), (Yes)))

� 
2 = ((idle, idle), (?, ?), ((1 1), ()))

� 
3 = ((working, working), (Yes, 1), ((), ()))

� 
5 = ((idle, working), (?, 1), ((1), ()))

According to Step 1 in Subsection 1.3.2 the reachability set has been gained in the following way:

i New Reached Examine

0 f
1g f
1g f
1g

1 f
4g f
1; 
4g f
4g

2 f
6g f
1; 
4; 
6g f
6g

3 f
7; 
8g f
1; 
4; 
6; 
7; 
8g f
7; 
8g

4 f
2; 
3; 
1g f
1; 
4; 
6; 
7; 
8; 
2; 
3g f
2; 
3g

5 f
5; 
4g f
1; 
4; 
6; 
7; 
8; 
2; 
3; 
5g f
5g

6 f
6g f
1; 
4; 
6; 
7; 
8; 
2; 
3; 
5g fg

Following Steps 2 to 4 in Subsection 1.3.2 reveals that the FDFD with 
initial is irreducible and

periodic with period d = 4. The same can be seen in the reachability graph (Figure 1.3).

We follow the algorithm from Subsection 1.4.2 to further analyze this M{TDFD:

(i) The d = 4 equivalence classes of states are:

� S1 = f
4; 
5g

� S2 = f
6g

� S3 = f
7; 
8g
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(C, P, 1): �4

(P, C, 1): �1

(P, P, 1): �3

(P, C, 1): �1 (C, C, 1): �2

(C, C, 1): �2 (P, C, 1): �1

(P, P, 1): �3

(C, C, 1): �2 (P, P, 1): �3

(C, P, 1): �4

(C, P, 1): �4

Figure 1.3: Reachability Graph of a Periodic and Irreducible M{TDFD.

� S4 = f
1; 
2; 
3g

� S = f
1; : : : ; 
8g

(ii) P can be determined using the reachability graph. It is arranged such that 
1 appears in the �rst

row/column and 
8 appears in the last row/column:
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P =

0
BBBBBBBBBBBBBBBBBBBB@

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 �4
�3+�4

�3
�3+�4

0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 �1
�1+�2

�2
�1+�2

0 �3
�2+�3

�2
�2+�3

0 0 0 0 0

�4
�1+�4

0 �1
�1+�4

0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCA

(iii) We select S0 = S2 = f
6g. Then �S = f
1; 
2; 
3; 
4; 
5; 
7; 
8g. We have

P 0 = (p066)

=

 
p66 +

X
k2�S

p6krk6

!

= (0 + p67r76 + p68r86)

=

�
�1

�1 + �2

�
�3

�2 + �3
� 1 � 1 +

�2

�2 + �3
�

�4

�3 + �4
� 1 +

�2

�2 + �3
�

�3

�3 + �4
� 1

�

+
�2

�1 + �2

�
�4

�1 + �4
� 1 � 1 +

�1

�1 + �4
�

�4

�3 + �4
� 1 +

�1

�1 + �4
�

�3

�3 + �4
� 1

��
= (1)

and p0 = (1).

(iv) The stationary probabilities p are:

p6 =
1

4

p1 =
1

4

�2

�1 + �2

�4

�1 + �4

p2 =
1

4

�1

�1 + �2

�3

�2 + �3

p3 =
1

4

�
�1

�1 + �2

�2

�2 + �3
+

�2

�1 + �2

�1

�1 + �4

�

p4 =
1

4

�
�1

�1 + �2

�2

�2 + �3

�4

�3 + �4
+

�2

�1 + �2

�1

�1 + �4

�4

�3 + �4
+

�2

�1 + �2

�4

�1 + �4
� 1

�

p5 =
1

4

�
�1

�1 + �2

�3

�2 + �3
� 1 +

�1

�1 + �2

�2

�2 + �3

�3

�3 + �4
+

�2

�1 + �2

�1

�1 + �4

�3

�3 + �4

�

p7 =
1

4

�1

�1 + �2

p8 =
1

4

�2

�1 + �2
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(v) The vector of expected waiting times 	 is:

	 =

�
1

�1
;
1

�2
;

1

�3 + �4
;
1

�3
;
1

�4
;

1

�1 + �2
;

1

�2 + �3
;

1

�1 + �4

�

(vi) The limiting process probabilities are calculated as:

�i =
pi	i

8X
j=1

pj	j

; i = 1; : : : ; 8

(vii) If we assume that we have identical rates �1 = �2 = �3 = �4 = 1, we get

p =
1

4

�
1

4
;
1

4
;
1

2
;
1

2
;
1

2
; 1;

1

2
;
1

2

�
;

	 =
1

2
(2; 2; 1; 2; 2;1;1;1) ; and

� =
1

11
(1; 1; 1; 2; 2; 2; 1;1) :

1.5 Future Directions

In this paper we have demonstrated how the aggregation principle from [Sch84] can be used to

analyze periodic and irreducible M{TDFD's with �nite reachability sets. Especially for large models,

this approach is very helpful to e�ciently determine stationary probabilities, expected waiting times,

and limiting process probabilities. So far, we have used this approach only to analyze periodic and

irreducible M{TDFD's with �nite reachability sets. Future work can be directed into two directions:

� Analysis of M{TDFD's with in�nite reachability sets: Many real systems behave like queueing

systems or queueing networks with �nite or in�nite queue lengths and tend to be periodic and

irreducible. M{TDFD's representing such systems might be candidates to be analyzed in a manner

similiar to the one described in this paper.

� Analysis of TDFD's with arbitrary transition times: The main idea in [Sch84] was the application

of the aggregation principle to queueing systems and networks with arbitrary service and inter{

arrival times, approximated through mixtures of Erlang distributions. We might be capable to do

a computationally e�cient analysis of TDFD's where transition times are modeled as mixtures of

Erlang distributions, using the aggregation principle in its original context.

Finally, there exist several types of real systems that are good candidates to be correctly modeled

and analyzed through (periodic and irreducible) M{TDFD's, while currently still being modeled and



23

analyzed through Timed Petri Nets. Examples for these systems are communication protocols (e. g.,

[MAT+77], [MB83], [Wal83]) and complex computer systems (e. g., [Zub80]). Another type of system

that might work quite well are general Producer/Consumer systems or networks of these, e. g., multi{

stage production systems (e. g., [Hil90]).

However, many systems modeled through Data Flow Diagrams, e. g., the case study of an elevator

system in [You89], the cruise control system, the bottle{�lling system, the pocket{sized logic analyser,

and the defect inspection system, all in [WM85b], probably would have non{Markovian transition

times. For models like these, an approximation of the real time behavior through mixtures of Erlang

distributions might be possible and an analysis based on the aggregation principle should be preferable

to results gained from simulation runs based on the TDFD.
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