
Timed Data Flow Diagrams

J�urgen Symanzik and Albert L. Baker

TR #96{23

December 1996

Keywords: Statistical Software Engineering, Formal Methods, Concurrent and Distributed Sys-

tems, Software Speci�cation, Formalized Data Flow Diagrams, Timed Petri Nets.

c Copyright 1996 by J�urgen Symanzik and Albert L. Baker. All rights reserved.

Department of Computer Science

226 Atanaso� Hall

Iowa State University

Ames, Iowa 50011{1040, USA

1

1 TIMED DATA FLOW DIAGRAMS

Abstract

Data Flow Diagrams (DFD's) are widely used in industry to express requirements speci�cations.

However, as used in practice, there has been no precise semantics for DFD's, let alone an incorporation

of a model of time. In this paper, we augment the Formalized Data Flow Diagrams (FDFD's) de�ned

in [LWBL96] by adding a deterministic (or stochastic) time behavior for the consumption of values

from in{ows to processes and the production of values to the out{ows from processes. We call our

new FDFD model Timed (or Stochastic) Data Flow Diagrams (TDFD's or SDFD's). We identify two

factors in determining how time can a�ect the choice of how an FDFD can change state. The �rst

factor has to do with when the decision is made as to which state transition will be next occur. The

two possibilities are a Preselection Policy and a Race Policy. The other timing factor is the past history

of an FDFD execution. We identify three alternatives: Resampling, Work Age Memory, and Enabling

Age Memory. Certain combinations of these alternatives allow us to model systems where components

are competing for limited resources. Other combinations allow us to model systems where components

work concurrently. Preemption can also be modeled using these alternatives. Major results for the

quantitative and qualitative analysis of TDFD's can be borrowed from the literature on Timed Petri

Nets.

2

1.1 Introduction

If formal speci�cation methods, at an appropriate level of abstraction, could support

� reasonable and convenient modeling of system timing behavior and

� direct speci�cation execution

their use would be far more prevalent. The results presented in this paper provide a formalization of an

already widely{used speci�cation method that supports modeling of the timing behavior of concurrent

and distributed systems and that can be directly executed. Our approach is to integrate models of

timing behavior and semantic rigor with traditional Data Flow Diagrams (DFD's).

DFD's are the basis of the software development methodology known as \Structured Analysis"

(SA) ([DeM78], [WM85a]). DFD's are popular because their graphical representation and hierarchical

structure allow some comprehension by users with non{technical backgrounds and they can also serve

as an initial characterization of software architecture.

The primary components of DFD's are bubbles and ows. In the graphical representation, bubbles

are drawn as circles while ows are drawn as arcs connecting the bubbles. Hence, formally, a DFD

is a directed bipartite graph. Within this model, bubbles can represent processes in a distributed

or concurrent system. Flows can then represent message paths. A bubble consumes the information

(values) on its in{ows, and produces information on its out{ows.

Numerous formalizations of DFD's have appeared in the technical literature, e. g., in [DeM78],

[WM85a], [WM85b], [Har87], [TP89], [You89], [Har92], and [Har96]. In this paper we use the de�nitions

of Formalized Data Flow Diagrams (FDFD's) developed by Coleman, Wahls, Baker, and Leavens in

[Col91], [CB94], [WBL93], and [LWBL96]. [War86] introduces a transformation schema that allows to

represent the control and timing aspects of a real system modeled as a DFD. However, this approach

has very little in common with computational models such as Timed Petri Nets (TPN's) or the concept

of time in FDFD's, introduced in this paper, where time is used to describe the behavior and to analyze

quantitative properties of the real system. In particular, for the de�nitions and example in this paper,

we use the notation from [LWBL96]. The potential for direct execution of these FDFD's is presented

in [WBL94].

It has been shown recently that a subclass of FDFD's, so called persistent ow{free Reduced Data

Flow Diagrams (PFF{RDFD's) is Turing equivalent ([SB96a]). On the other hand, features such as

persistent ows, stores, and the facility to test for empty ows that are widely used in applications of

3

FDFD's, only add to the expressive convenience of FDFD's, and do not raise the power of the model

beyond that of Turing Machines ([SB96b]).

To{date, and to the best of our knowledge, there does not exist any extension of DFD's that

includes the notion of time. We have augmented FDFD's to include timing, and refer to such DFD's as

Timed Data Flow Diagrams (TDFD's) or Stochastic Data Flow Diagrams (SDFD's) acknowledging the

stochastic models we adopt for time. Because of the wide use of DFD's for requirements speci�cations,

we completely maintain the original syntax and semantics of FDFD's and, in what we hope is both an

intuitive and general manner, add a model of time to the operational semantics of FDFD's.

We have borrowed from the work on Timed Petri Nets (TPN's), in particular from [MBB+85], for

incorporating a model of time into FDFD's. However, TPN's are used primarily to capture the requisite

synchronization in concurrent and distributed systems, but do not usually represent the full functional

behavior of the systems. Thus, if one is developing a client server system with replicated servers, TPN's

can be used to indicate the synchronization of communication between servers in satisfying a client

request, but would not capture the particulars of the data interchanged between servers, nor the actual

responses to clients. By relating the existing analytical results for TPN's to our model of time in

TDFD's, people who currently use DFD's as a speci�cation technique can immediately use the more

powerful timed model and achieve the same type of results for issues like deadlock and race conditions

available for analogous TPN's.

A reasonable approach to the modeling of time in FDFD's is to de�ne a stochastic time behavior

for the consumption of in{ow items as well as a stochastic time behavior for the production of items

on the out{ow. In a di�erent approach, we could assign message passing times to the FDFD. Other

models for times, or mixtures of several approaches, might be adopted. In this paper we only use

the �rst approach. But it is worth noting that we have found our model of time to be expressively

convenient and that the particular choice may not be of theoretical importance. It is established in

[BR90] that, on a fundamental level, any type of TPN is su�cient, as long as it contains nonzero

delays. We elsewhere ([SB96a], [SB96c]) argue the tight relationship between (subclasses of) FDFD's,

Petri Nets (e. g., [Pet81]), and FIFO Petri Nets (introduced in [MM81]).

The work presented here covers one of the interrelated aspects of Statistics and Software Engineering,

combined in the new interdisciplinary �eld \Statistical Software Engineering"1. The introduction of

timing and the related statistical analysis will allow as early as in the Speci�cations phase of the spiral

1Statistical Software Engineering: \The interdisciplinary �eld of statistics and software engineering specializing in the
use of statistical methods for controlling and improving the quality and productivity of the practices used in creating
software." ([Nat96], p. 5)

4

software development process model ([Nat96], p. 63) to decide whether quantitative requirements of the

software system are ful�lled.

In Section 1.2 of this paper, we will summarize basic de�nitions for FDFD's. Timed (Stochastic)

Data Flow Diagrams will be introduced in Section 1.3. In Section 1.4, we describe a Producer/Consumer

Model as a TDFD and consider possible execution policies. We conclude this paper with an overview

on future work in Section 1.5.

1.2 De�nitions

The de�nition of FDFD's from [LWBL96] is:

De�nition (1.2.1): A Formalized Data Flow Diagram (FDFD) is a quintuple

FDFD = (B ;FLOWNAMES ;TYPES ;P ;F);

where B is a set of bubbles, FLOWNAMES is a set of ows, TYPES is a set of types, P is the set

fpersistent, consumableg and F = B � FLOWNAMES � TYPES � B � P . The following notational

convention for members from these domains is used: b 2 B ; fn 2 FLOWNAMES ; T 2 TYPES ; p 2
P ; f 2 F .

While a more rigorous de�nition of the mappings used to de�ne the execution behavior of FDFD's

is contained in [LWBL96], a less formal explanation follows.

Consumable ows are modeled as in�nite queues of values and persistent ows are modeled as shared

variables for which the source bubble can write the value and the destination bubble can read the value.

Intuitively, the semantics of FDFD's is based on a two-step �ring rule for bubbles. Each bubble b is

either in one of two modes: idle or working. The state of an FDFD is the current value on all the ows

and the current mode of each bubble (along with what values were consumed by bubbles in the working

mode, at the point they went from idle to working).

If bubble b is idle, then its change of state to working is predicated by an enabling rule, Enabled

which is just an assertion over the values on its in{ows. If Enabled is satis�ed for bubble b and the

values of the in{ows to b, then b is a candidate for �ring. If b is selected for �ring, then the values on

the in{ows to b which satis�ed the enabling rule are consumed (or copied from persistent ows), and

b enters working mode.

5

If a bubble b is working, it is also a candidate for �ring. When b is selected for execution, the values

that were previously consumed (or copied) are used in a postcondition assertion that de�nes the values

to be output from b on out{ows from b.

From this basic de�nition of FDFD's, we can de�ne a sequence of �ring steps in the execution of an

FDFD:

De�nition (1.2.2): A �ring sequence (computation sequence) of an FDFD is a possibly in�nite

sequence (bi; ai; ji) 2 B�fC;Pg�IN; i � 0; such that, if transition (bi; ai; ji) is �red in state (bm ; r; fs),

then

(fs0; r0) =

8<
:

(Consume(bi))ji(fs ; r); if ai = C

(Produce(bi))ji(fs; r); if ai = P

bm0(bi) =

8<
:

working ; if ai = C

idle; if ai = P

bm0(b) = bm(b) 8 b 2 B � fbig
and

(bm; r; fs)! (bm 0; r0; fs0).

We introduce the notation (bm; r; fs)[(b; a; j)] to indicate that transition (b; a; j) is �reable in state

(bm; r; fs) and (bm ; r; fs)[(b; a; j)](bm0; r0; fs0) to indicate that state (bm 0; r0; fs0) is reached upon the

�ring of transition (b; a; j) in state (bm; r; fs).

By induction, we extend this notation for �ring sequences:

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn�1; an�1; jn�1); (bn; an; jn)]

is used to indicate that transition (bn; an; jn) is �reable in state (bmn�1; rn�1; fsn�1), given that

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn�1; an�1; jn�1)](bmn�1; rn�1; fsn�1)

holds. By analogy, we use

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn; an; jn)](bmn; rn; fsn)

to indicate that state (bmn; rn; fsn) is reached upon the �ring of the sequence (b1; a1; j1); : : : ; (bn; an; jn).

De�nition (1.2.3): The set of �ring sequences (set of computation sequences, language) of an

FDFD, denoted by FS (FDFD; initial), is the set containing all �ring sequences that are possible for

6

this FDFD, given initial = (bm initial; rinitial; fsinitial), i. e.,

FS (FDFD; initial) = fs j s 2 (B � fC;Pg� IN)� ^ initial[s]g:

De�nition (1.2.4): The Reachability Set of an FDFD, denoted by RS (FDFD; initial), is the

set of states = (bm ; r; fs) that are reachable from initial = (bminitial; rinitial; fsinitial), i. e.,

RS (FDFD; initial) = f j 2 � ^ 9 s 2 FS (FDFD; initial) : initial[s]g:

De�nition (1.2.5): Let EN () � B � fC;Pg � IN be the set of transitions that are enabled in

state = (bm; r; fs), i. e.,

EN () = fs j s 2 (B � fC;Pg� IN) ^ [s]g:

1.3 Stochastic Data Flow Diagrams

We will make use of random variables to specify the time behavior of FDFD's. Therefore, Stochastic

Data Flow Diagram (SDFD) is a more appropriate name for our new model. We try to follow the

general approach of Stochastic Petri Nets given in [MBB+85] when de�ning SDFD's, when considering

the impact of di�erent execution policies on the semantics of the model, and when allowing a general

time distribution that induces an associated stochastic process.

We start to describe the behavior of a TDFD by describing a possible timed �ring sequence of an

FDFD.

De�nition (1.3.1): A timed �ring sequence (TFS) of an FDFD with initial state initial is a pair

tfs = (s; �), where s 2 FS (FDFD; initial) and � is a non{decreasing sequence (of the same length) of

real non{negative values representing the instants of �ring (called epochs) of each transition, such that

consecutive transitions (bi; ai; ji) and (bi+1; ai+1; ji+1) correspond to ordered epochs �i � �i+1. The

time intervals [�i; �i+1) between consecutive epochs represent the periods in which the FDFD remains

in state i (assuming �0 = 0). A history of the FDFD up to the kth epoch �k is denoted by Z(k).

The introduction of a stochastic time behavior for FDFD's will allow us to describe (in a probabilis-

tic sense) the future behavior of a system from the knowledge of the past history and the current state.

7

De�nition (1.3.2): Let Z = Z(k) be a history of the FDFD up to (and including) the kth epoch,

and = k be the state entered by �ring transition (bk; ak; jk). We assume that for all k; Z, and , the

following joint distribution functions can be uniquely determined:

F�;X((b; a; j); x j ; Z) = Pr(� = (b; a; j); X � x j ; Z) (1.3.2.1)

The distribution above depends on two random variables: The discrete random variable � represents

the transition that will �re. The sample space for � is the set of transitions enabled in , i. e.,

� = EN (). The continuous random variable X represents the time that elapses from entering up

to the next transition epoch, i. e., the time interval �k+1� �k. The sample space for X are positive real

numbers including 0 (same time as previous transition) and 1 (never), i. e.,
X = IR+
1.

Note that is known from Z, but we have explicitly indicated the dependence on since quite often,

 is the only component that inuences the joint distribution functions (1.3.2.1). These distributions

must be de�ned for all transitions (b; a; j) 2 EN ().

We de�ne the marginal probability function of selecting (b; a; j) to be the next transition to �re as

p(b;a;j)(; Z) = Pr(� = (b; a; j) j ; Z)

= lim
t!1

F�;X((b; a; j); t j ; Z)

=

Z 1

0

dxF�;X((b; a; j); x j ; Z) (1.3.2.2)

and the marginal distribution function of the time spent in state before the next epoch is reached as

FX(x j ; Z) =
X

s2EN ()

F�;X(s; x j ; Z): (1.3.2.3)

De�nition (1.3.3): A Stochastic Data Flow Diagram (SDFD) is an FDFD (with initial state

initial) with a set of speci�cations for calculating the joint distribution functions F�;X((b; a; j); x j ; Z)
for all and Z , and with an initial probability distribution on the Reachability Set RS (FDFD; initial).

Due to this de�nition, the ensemble of possible executions of a SDFD, together with the proba-

bility measure induced on it by assigning the �ring distributions F�;X((b; a; j); x j ; Z), describes a

stochastic process with a discrete state space isomorphic to a subset of RS(FDFD; initial) of the

associated FDFD. For the initial probability distribution on RS(FDFD; initial), we assume that

Pr(system is in state initial at time �0 = 0) = 1.

8

When in a given state only one transition is enabled, say (b; a; j), the calculation of

F�;X((b; a; j); x j ; Z)

requires only to determine the distribution of the time spent in , possibly conditioned on the past

history Z.

When a state enables at least two transitions, the computation of the distributions

F�;X((b; a; j); x j ; Z)

requires the knowledge of the policy used for the selection of the transition that �res. We consider two

possible policies:

De�nition (1.3.4): The Preselection Policy: When the SDFD enters state , a transition s is

selected among those in EN () according to its probability ps(; Z), Then, s will �re after a random

delay with distribution FXj�(x j s; ; Z). Thus, the selection of the transition that actually �res does

not depend upon the associated delay. Otherwise, once a transition has been selected, the sojurn

time in does not depend upon the delays associated to the other transitions. Therefore, a model

with preselection policy requires the speci�cation of both the probabilities ps(; Z) and the conditional

distributions FXj�(x j s; ; Z).

Equation (1.3.2.1) can be rewritten as

F�;X(s; x j ; Z) = ps(; Z) � FXj�(x j s; ; Z) (1.3.4.1)

where FXj� represents the conditional distribution of the �ring delays conditioned on ; Z, and the fact

that s is the transition that will actually �re. Obviously,
X

si2EN ()

psi(; Z) = 1.

De�nition (1.3.5): The Race Policy: When the SDFD enters state , for each transition

si 2 EN () a random sample #i from �i is extracted from the joint distribution

��1;:::;�jEN()j
(x1; : : : ; xjEN()j j ; Z) = Pr(�1 � x1; : : : ; �jEN ()j � xjEN ()j j ; Z) (1.3.5.1)

The minimum #i of the samples #1; : : : ; #jEN ()j determines two properties: the transition si which will

actually �re and the sojorn time #i in . We consider only the case where all random variables �i are

stochastically independent. Then, (1.3.5.1) is uniquely determined by the marginal distributions

�i(x j ; Z) = Pr(�i � x j ; Z); i = 1; : : : ; j EN () j: (1.3.5.2)

9

Now, the joint distribution function (1.3.2.1) can be expressed as

F�;X(si; x j ; Z) =
Z x

0

0
B@ Y

j=1;:::;jEN()j

j 6=i

[1� �j(u j ; Z)]

1
CA du�i(u j ; Z): (1.3.5.3)

Therefore, the marginal probability function (1.3.2.2) can be rewritten as

psi(; Z) = lim
t!1

F�;X(si; t j ; Z)

=

Z 1

0

0
B@ Y

j=1;:::;jEN()j

j 6=i

[1� �j(u j ; Z)]

1
CA du�i(u j ; Z) (1.3.5.4)

and the marginal distribution function (1.3.2.3) can be expressed as

FX(x j ; Z) = 1�
Y

j=1;:::;jEN ()j

Pr(�j > x j ; Z)

= 1�
Y

j=1;:::;jEN ()j

[1� �j(x j ; Z)]: (1.3.5.5)

Thus, a model with race policy requires the speci�cation of the marginal distributions �i(x j ; Z); i =
1; : : : ; j EN () j, only.

Now, we consider three possible ways to deal with the past history Z:

Resampling: The distributions F�;X((b; a; j); x j ; Z) are independent of Z , but they may depend on

the current state .

Work Age Memory: The distributions F�;X((b; a; j); x j ; Z) depend on the past history Z through

a new variable, a so{called work age variable, associated with each transition (b; a; j). The work

age variables accumulate the work done | for each transition from its last �ring up to the

considered epoch. The distributions F�;X((b; a; j); x j ; Z) represent the residual times needed

for the transitions to complete.

Enabling Age Memory: The distributions F�;X((b; a; j); x j ; Z) depend on the past history Z through

a new variable, a so{called enabling age variable, associated with each transition (b; a; j). The

enabling age variables accumulate the work done | for each transition from the last instant at

which it has become enabled up to the considered epoch. The distributions F�;X((b; a; j); x j ; Z)
represent the residual times needed for the transitions to complete.

Combining the two policies for selecting a transition that �res with the three methods of dealing

with the past history Z results in six di�erent execution policies. Four of them are intuitively easy to

understand while two of them are more complex and can be neglected for practical purposes.

10

Race Policy with Resampling (RR): This execution policy best describes the behavior of a set

of parallel competing (conicting) transitions. The �rst transition to terminate determinates a

change in the system state. The work done by all other transitions that do not complete is lost.

Therefore, this policy seems to be interesting only in the case of conicting transitions that make

use of the same resources. Note that this only happens for FDFD's if for a given input that has

been read a bubble can nondeterministically select among two or more alternatives which output

to produce when changing its mode from working to idle.

Race Policy with Work Age Memory (RW): Here, simultaneous transitions are described. The

�rst transition to terminate determines a change in the system state. However, the work done

by all other transitions that do not complete is not lost. Instead, it is assumed that all the work

done by each transition is being accumulated from when it is �rst enabled up to the current �ring.

After this �ring, a transition will resume its work in the next state that enables it, from the point

at which it has been interrupted. Therefore, this execution policy is useful in situations where

conicting and concurrent transitions can happen.

Race Policy with Enabling Age Memory (RE): Once again, simultaneous transitions are de-

scribed. The �rst transition to terminate determines a change in the system state. However,

in this case, the work done by all other transitions that do not complete is lost, unless they re-

main enabled in the new state that is reached through the current �ring. Therefore, this execution

policy is useful in situations where conicting and concurrent transitions can happen, but it also

allows preemption.

Preselection with Resampling (PR): This execution policy can be used when a set of conicting

transitions can not perform in parallel. Before the system can enter a new state, it has to choose

which of the conicting transitions will �re next. Once choosen, this transition will perform until

completion and the system will enter the new state.

Preselection with Work Age Memory (PW): In this execution policy, the transition that will

determine the stage change is choosen immediately when a new state has been reached. Then,

this transition performs until completion and the system will enter the next state. All other

transitions that were enabled but have not been choosen execute in parallel to the choosen one

until the state change caused by the choosen transition occurs. Each transition will resume work

in the next state where it is enabled, continuing from the point that has been reached when

the state change occurred. Of course, this may cause some paradoxon: It may happen that the

11

choosen transition performs longer than some of the transitions that have not been choosen and

have terminated without being allowed to induce a state change.

Preselection with Enabling Age Memory (PE): Similarly, the transition that will determine the

stage change is choosen immediately when a new state has been reached. Then, this transition

performs until completion and the system will enter the next state. All other transitions that were

enabled but have not been choosen execute in parallel to the choosen one until the state change

caused by the choosen transition occurs. However, if a transition is not enabled in the new state

that is reached through the current �ring, all its accumulated work is lost. The same paradoxon

as in the previous case may occur.

1.4 Example of a Producer/Consumer Model

The example in this section shows a Producer/Consumer model where the producer can work when-

ever it is ready, while the consumer has to wait for inputs from the producer. The given distributions do

not really provide a useful application, but have been choosen to demonstrate the di�erent behavior of

the model under di�erent execution policies. In fact, for most of the policies, the producer will produce

items at a faster rate then the consumer can consume, resulting in a (permanently) increasing queue

length of ow f.

.......

........
........
.........
..........
..............

...
...........
..........
........
........
.......
....

........
........
.........
..........
..............

...
...........
..........
........
........
.......
..................................

........
..............................
........

f out

P C

Figure 1.1: Example of a SDFD.

The mappings Enabled , Consume , and Produce for the SDFD shown in Figure 1.1 are speci�ed as

follows:

Enabled (P) = �fs : true

Enabled (C) = �fs : (:IsEmpty(f) ^Head(fs(f)) = 0)

_(:IsEmpty(f) ^Head(fs(f)) = 1)

s ts

Consume(P) = �(fs ; r) : f(fs; r)g (P, C, 1) 2

Consume(C) = �(fs; r) :

12

fif (:IsEmpty(f) ^Head (fs(f)) = 0)

then In(f ; C)(fs; r) (C, C, 1) 4

�,

if (:IsEmpty(f) ^Head (fs(f)) = 1)

then In(f ; C)(fs; r) (C, C, 2) 5

�

g

Produce(P) = �(fs; r) :

fOut(0; f ; P)(fs; r), (P, P, 1) 2

Out(1; f ; P)(fs; r)g (P, P, 2) 3

Produce(C) = �(fs ; r) :

fif r(C)(f) = 0

then Out(a; out ; C)(fs; r) (C, P, 1) 3

2Out(b; out; C)(fs; r) (C, P, 2) 4

�;

if r(C)(f) = 1

then Out(c; out ; C)(fs; r) (C, P, 3) 6

�

g
Now, we consider the e�ect of di�erent execution policies on this basic model. The symbol

p
marks

the transition that actually �res. With \Acc" we denote the time accumulated for a transition that did

not �re.

Race Policy:

We de�ne the following marginal distributions �i(x j ; Z) for the race policy:

Pr(�s = ts j ; Z) = 1 8s 2 EN () 8 8Z

All these distributions are Dirac distributions. From the statistical point of view, they are degenerate

distributions where all the mass is assigned to the point ts. From the applied point of view, these

distributions are used to express a deterministic time for each transition.

Race/Resampling

There is only one possible timed �ring sequence tfs = (s; �) for this execution policy:

13

i 0 1 2 3 4

� 0 2 4 6 8

s (P, C, 1) (P, P, 1) (P, C, 1) (P, P, 1)

EN () (P, C, 1)
p

(P, P, 1)
p

(P, C, 1)
p

(P, P, 1)
p

(P, C, 1)

(P, P, 2) (C, C, 1) (P, P, 2) (C, C, 1)

(C, C, 1)

� �1 = 2: (P, C, 1) is the only possible transition and executes at time 2.

� �2 = 4: (P, P, 1) and (P, P, 2) compete and will terminate at time 4 and 5, respectively. Therefore,

(P, P, 1) executes at time 4.

� �3 = 6: (P, C, 1) and (C, C, 1) compete and will terminate at time 6 and 8, respectively. Therefore,

(P, C, 1) executes at time 6.

� �4 = 8: (P, P, 1), (P, P, 2), and (C, C, 1) compete and will terminate at time 8, 9, and 10,

respectively. Therefore, (P, P, 1) executes at time 8.

� �5 = 10: In analogy to �3.

Race/Work Age

We indicate the timed �ring sequence tfs = (s; �) for the �rst 5 epochs:

i 0 1 2 3 4 5

� 0 2 4 6 7 8

s (P, C, 1) (P, P, 1) (P, C, 1) (P, P, 2) (C, C, 1)

EN ()/Acc (P, C, 1)/0
p

(P, P, 1)/0
p

(P, C, 1)/0
p

(P, P, 1)/0 (P, C, 1)/0 (P, C, 1)/1

(P, P, 2)/0 (C, C, 1)/0 (P, P, 2)/2
p

(C, C, 1)/3
p

(C, P, 1)/0

(C, C, 1)/2 (C, P, 2)/0

:EN ()/Acc (P, P, 2)/2 (P, P, 1)/1 (P, P, 1)/1

� �1 = 2: (P, C, 1) is the only possible transition and executes at time 2.

� �2 = 4: (P, P, 1) and (P, P, 2) compete and will terminate at time 4 and 5, respectively. Therefore,

(P, P, 1) executes at time 4. (P, P, 2) accumulates 2 time units of work, but is not enabled past

�2 = 4.

� �3 = 6: (P, C, 1) and (C, C, 1) compete and will terminate at time 6 and 8, respectively. Therefore,

(P, C, 1) executes at time 6. (C, C, 1) accumulates 2 time units of work and is enabled past �3 = 6.

(P, P, 2) is enabled again past �3 = 6.

14

� �4 = 7: (P, P, 1), (P, P, 2), and (C, C, 1) compete and will terminate at time 8, 7, and 8, respectively.

Therefore, (P, P, 2) executes at time 7. (P, P, 1) accumulates 1 time unit of work, but is not enabled

past �4 = 7. (C, C, 1) accumulates 1 time unit of work and is enabled past �4 = 7.

� �5 = 8: (P, C, 1) and (C, C, 1) compete and will terminate at time 9 and 8, respectively. Therefore,

(C, C, 1) executes at time 8. (P, C, 1) accumulates 1 time unit of work and is enabled past �5 = 8.

(P, P, 1) remains disabled past �5 = 8.

Race/Enabling Age

We indicate the timed �ring sequence tfs = (s; �) for the �rst 5 epochs:

i 0 1 2 3 4 5

� 0 2 4 6 8 10

s (P, C, 1) (P, P, 1) (P, C, 1) (P, P, 1) (P, C, 1)

(C, C, 1)

EN ()/Acc (P, C, 1)/0
p

(P, P, 1)/0
p

(P, C, 1)/0
p

(P, P, 1)/0
p

(P, C, 1)/0
p

(P, P, 1)/0

(P, P, 2)/0 (C, C, 1)/0 (P, P, 2)/0 (C, P, 1)/0 (P, P, 2)/0

(C, C, 1)/2
p

(C, P, 2)/0 (C, P, 1)/2

(C, P, 2)/2

� �1 = 2: (P, C, 1) is the only possible transition and executes at time 2.

� �2 = 4: (P, P, 1) and (P, P, 2) compete and will terminate at time 4 and 5, respectively. Therefore,

(P, P, 1) executes at time 4. (P, P, 2) looses the work accumulated so far since it is not enabled

past �2 = 4.

� �3 = 6: (P, C, 1) and (C, C, 1) compete and will terminate at time 6 and 8, respectively. Therefore,

(P, C, 1) executes at time 6. (C, C, 1) accumulates 2 time units of work and is enabled past �3 = 6.

� �4 = 8: (P, P, 1), (P, P, 2), and (C, C, 1) compete and will terminate at time 8, 9, and 8, respectively.

We have to consider two cases:

{ (P, P, 1) executes at time 8, then (C, C, 1) executes at time 8.

{ (C, C, 1) executes at time 8, then (P, P, 1) executes at time 8.

Since both transitions depend on di�erent resources and the execution of one of them does not

disable the other one, the results are the same. (P, P, 2) looses the work accumulated so far since

it is not enabled past �4 = 8.

15

� �5 = 10: (P, C, 1), (C, P, 1), and (C, P, 2) compete and will terminate at time 10, 11, and 12,

respectively. Therefore, (P, C, 1) executes at time 10. (C, P, 1) accumulates 2 time units of work

and is enabled past �5 = 10. (C, P, 2) accumulates 2 time units of work and is enabled past

�5 = 10.

Preselection Policy:

We consider three di�erent cases of the Preselection/Resampling policy.

� First, we de�ne

ps(; Z) =
1

j EN () j 8s 2 EN () 8 8Z

and

Pr(X = ts j s; ; Z) = 1 8s 2 EN () 8 8Z:

Here are all possible timed �ring sequences tfs = (s; �) according to this policy and distribution

for the �rst 4 epochs:

i 0 1 2 3 4

s : � 2 : (P, C, 1) 4 : (P, P, 1) 6 : (P, C, 1) 8 : (P, P, 1)

9 : (P, P, 2)

10 : (C, C, 1)

8 : (C, C, 1) 10 : (P, C, 1)

11 : (C, P, 1)

12 : (C, P, 2)

5 : (P, P, 2) 7 : (P, C, 1) 9 : (P, P, 1)

10 : (P, P, 2)

12 : (C, C, 2)

10 : (C, C, 2) 12 : (P, C, 1)

16 : (C, P, 3)

� Now, we change the selection probabilities to

p(P;C;1)(; Z) = 1 8 : (idle(P)) 8Z

p(P;P;1)(; Z) = 1 8 : (working(P)) 8Z

and

ps(; Z) = 0 for all other s 2 EN () 8Z

16

but maintain the delay

Pr(X = ts j s; ; Z) = 1 8s 2 EN () 8 8Z:

We make use of 0{probabilities to disable some transitions that are possible �ring candidates

according to EN (). Actually, we only allow bubble P to proceed. This yields exactly the same

timed �ring sequence as for the Race/Resampling policy.

� Finally, we consider a more realistic model by choosing the following selection probabilities

p(P;C;1)(; Z) = 1 8 : (idle(P) ^ idle(C) ^ IsEmpty(f)) 8Z

p(P;P;1)(; Z) = 1 8 : (working(P)) 8Z

p(C;C;1)(; Z) = 1 8 : (idle(P) ^ idle(C) ^ :IsEmpty(f)) 8Z

p(C;P;1)(; Z) = 1 8 : (working(C)) 8Z

and

ps(; Z) = 0 for all other s 2 EN () 8Z

but maintain the delay

Pr(X = ts j s; ; Z) = 1 8s 2 EN () 8 8Z:

Once again, we make use of 0{probabilities to disable some transitions. The e�ect of this policy

and distribution is a timed �ring sequence where (P, C, 1), (P, P, 1), (C, C, 1), and (C, P, 1) alternate

in this order.

1.5 Future Directions

One of the �rst things to be done in the future is an overview of the types of stochastic processes

associated to our TDFD, similar to the characterization of the stochastic process that is underlying a

Stochastic Petri Net ([CGL94]). Di�erent types of probability distributions and execution policies will

result in stochastic processes of di�erent avors, some of them easy to analyze and some of them di�cult

to capture. For Timed Petri Nets (TPN's), most work has been done for Exponential distributions (e. g.,

[MC87]), associated to a Markov process which is usually easy to analyze. Reasonable analytical results

also can be gained for Phase{Type distributions. Other time behavior that can be found in the literature

for TPN's, e. g., Deterministic timing (e. g., [MC87]), mixture of Deterministic and Exponential timing,

and interval timing, should result in reasonable results for TDFD's, too.

17

Many problems that occur during the analysis of TDFD's have been known for a long time when

analyzing TPN's. Some of these problems concern the state explosion and undecidability. However,

there exists a large number of automated tools that help evaluate, analyze, and solve TPN's. To

mention only a few, in [Chi85] a software package is introduced that allows the steady state and

transient analysis of generalized Stochastic Petri Nets. [Cum85] describes a software package for the

analysis of Stochastic Petri Nets models where transition �ring times are distributed as Phase{Type.

[Men85] provides a tool for the analysis of TPN's where �ring only occurs within the limits of time

de�ned by the interval [a; b]; b� a. In [GM95], TimeNET, a tool especially designed for non{Markovian

Stochastic Petri Nets is presented and a comparison with other Petri Net tools is given. It should be

possible to reuse and extend methods, algorithms, and tools known from TPN's for TDFD's. Once

adapted, one might hopefully automatically evaluate, analyze, and solve these TDFD's. Depending on

the types of distributions that are allowed for the �ring times, one might consider to provide software

that is capable of doing an analytical analysis if a Markov chain or a (semi) Markov process is associated

with the TDFD. Or, one might do simulations if everything else fails.

In addition to a quantitative analysis (performance, throughput, average load of a bubble, etc.),

mostly a�ected by the choice of the probability distributions, TDFD's also invite a qualitative analysis

(deadlock, reachability, termination, �niteness, liveness, etc.). Some answers to qualitative questions

may be gained from the related FDFD (e. g., there is no deadlock state for the TDFD if the FDFD

has no deadlock state), but others are not immediately achievable (it is not guaranteed that the TDFD

can reach a particular state even though it can be reached for the FDFD). Future research should be

directed towards the question how decidability problems for TDFD's and FDFD's are related, similar

to the discussion in [God82] where liveness properties of Petri Nets and Timed Petri Nets are compared.

Acknowledgements

Symanzik's research was partially supported by a German \DAAD{Doktorandenstipendium aus

Mitteln des zweiten Hochschulsonderprogramms". The authors wish to thank Herbert T. David and

Kenneth J. Koehler for many valuable suggestions on the presentation of this topic.

18

Bibliography

[BR90] I.I. Bestuzheva and V.V. Rudnev. Timed Petri Nets: Classi�cation and Comparative Anal-

ysis. Automation and Remote Control, Pt. 1, 51(10):1303{1318, 1990.

[CB94] D.L. Coleman and A.L. Baker. Synthesizing Structured Analysis and Object{Oriented

Speci�cations. Technical Report 94-04, Iowa State University, Department of Computer

Science, 226 Atanaso� Hall, Ames, Iowa 50011, March 1994. Available by anonymous ftp

from ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.

[CGL94] G. Ciardo, R. German, and C. Lindemann. A Charcterization of the Stochastic Process

Underlying a Stochastic Petri Net. IEEE Transactions on Software Engineering, 20(7):506{

515, 1994.

[Chi85] G. Chiola. A Software Package for the Analysis of Generalized Stochastic Petri Net Models.

In International Workshop on Timed Petri Nets, Torino, Italy, July 1985, pages 136{143,

1985.

[Col91] D.L. Coleman. Formalized Structured Analysis Speci�cations. PhD Thesis, Iowa State

University, Ames, Iowa, 50011, 1991.

[Cum85] A. Cumani. ESP | A Package for the Evaluation of Stochastic Petri Nets with Phase{Type

Distributed Transition Times. In International Workshop on Timed Petri Nets, Torino,

Italy, July 1985, pages 144{151, 1985.

[DeM78] T. DeMarco. Structured Analysis and System Speci�cation. Yourdon, Inc., New York, New

York, 1978.

[GM95] R. German and J. Mitzla�. Transient Analysis of Deterministic and Stochastic Petri Nets

with TimeNET. In H. Beilner and F. Bause, editors, Lecture Notes in Computer Science Vol.

977: Quantitative Evaluation of Computing and Communication Systems, pages 209{223,

Springer{Verlag, Berlin, Heidelberg, 1995.

19

[God82] H.P. Godbersen. On the Problem of Time in Nets. In C. Girault and W. Reisig, edi-

tors, Informatik{Fachberichte Vol. 52: Application and Theory of Petri Nets, pages 23{30,

Springer{Verlag, Berlin, Heidelberg, 1982.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 8(3):231{274, 1987.

[Har92] D. Harel. Biting the Silver Bullet. Computer, 21(1):8{20, January 1992.

[Har96] D. Harel. Executable Object Modeling with Statecharts. In Proceedings of the 18th Interna-

tional Conference on Software Engineering, pages 246{257. IEEE Computer Society Press,

January 1996.

[LWBL96] G.T. Leavens, T. Wahls, A.L. Baker, and K. Lyle. An Operational Semantics of Firing

Rules for Structured Analysis Style Data Flow Diagrams. Technical Report 93{28d, Iowa

State University, Department of Computer Science, 226 Atanaso� Hall, Ames, Iowa 50011,

December 1993, revised, July 1996. Available by anonymous ftp from ftp.cs.iastate.edu or

by e{mail from almanac@cs.iastate.edu.

[MBB+85] M.A. Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani. On Petri Nets

with Stochastic Timing. In International Workshop on Timed Petri Nets, Torino, Italy,

July 1985, pages 80{87, 1985.

[MC87] M.A. Marsan and G. Chiola. On Petri Nets with Determinstic and Exponentially Dis-

tributed Firing Times. In G. Rozenberg, editor, Lecture Notes in Computer Science Vol.

266: Advances in Petri Nets 1987, pages 132{145, Springer{Verlag, Berlin, Heidelberg, 1987.

[Men85] M. Menasche. PAREDE: An Automated Tool for the Analysis of Time(d) Petri Nets. In

International Workshop on Timed Petri Nets, Torino, Italy, July 1985, pages 162{169, 1985.

[MM81] R. Martin and G. Memmi. Speci�cation and Validation of Sequential Processes Commu-

nicating by FIFO Channels. I.E.E. Conference Publication No. 198: Fourth International

Conference on Software Engineering for Telecommunication Switching Systems, Warwick,

July 1981, pages 54{57, 1981.

[Nat96] National Academy of Sciences. Statistical Software Engineering. National Academy Press,

Washington, D.C., 1996.

20

[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice{Hall, Inc., Engle-

wood Cli�s, New Jersey, 1981.

[SB96a] J. Symanzik and A.L. Baker. Formalized Data Flow Diagrams and Their Relation to Other

Computational Models. Technical Report 96{20, Iowa State University, Department of

Computer Science, 226 Atanaso� Hall, Ames, Iowa 50011, December 1996. Available by

anonymous ftp from ftp.cs.iastate.edu or by e{mail from almanac@cs.iastate.edu.

[SB96b] J. Symanzik and A.L. Baker. Non{Atomic Components of Data Flow Diagrams: Stores,

Persistent Flows, and Tests for Empty Flows. Technical Report 96{21, Iowa State Uni-

versity, Department of Computer Science, 226 Atanaso� Hall, Ames, Iowa 50011, De-

cember 1996. Available by anonymous ftp from ftp.cs.iastate.edu or by e{mail from al-

manac@cs.iastate.edu.

[SB96c] J. Symanzik and A.L. Baker. Subclasses of Formalized Data Flow Diagrams: Mono-

geneous, Linear, and Topologically Free Choice RDFD's. Technical Report 96{22, Iowa

State University, Department of Computer Science, 226 Atanaso� Hall, Ames, Iowa 50011,

December 1996. Available by anonymous ftp from ftp.cs.iastate.edu or by e{mail from

almanac@cs.iastate.edu.

[TP89] T.H. Tse and L. Pong. Towards a Formal Foundation for DeMarco Data Flow Diagrams.

The Computer Journal, 32(1):1{12, February 1989.

[War86] P.T. Ward. The Transformation Schema: An Extension of the Data Flow Diagram to

Represent Control and Timing. IEEE Transactions on Software Engineering, SE{12(2):198{

210, 1986.

[WBL93] T. Wahls, A.L. Baker, and G.T. Leavens. An Executable Semantics for a Formalized

Data Flow Diagram Speci�cation Language. Technical Report 93{27, Iowa State Univer-

sity, Department of Computer Science, 226 Atanaso� Hall, Ames, Iowa 50011, Novem-

ber 1993. Available by anonymous ftp from ftp.cs.iastate.edu or by e{mail from al-

manac@cs.iastate.edu.

[WBL94] T. Wahls, A.L. Baker, and G.T. Leavens. The Direct Execution of SPECS{C++: A Model{

Based Speci�cation Language for C++ Classes. Technical Report 94{02b, Iowa State Uni-

versity, Department of Computer Science, 226 Atanaso� Hall, Ames, Iowa 50011, February

21

1994, revised, November 1994. Available by anonymous ftp from ftp.cs.iastate.edu or by

e{mail from almanac@cs.iastate.edu.

[WM85a] P.T. Ward and S.J. Mellor. Structured Development for Real{Time Systems, Volume 1:

Introduction and Tools. Yourdon, Inc., New York, New York, 1985.

[WM85b] P.T. Ward and S.J. Mellor. Structured Development for Real{Time Systems, Volume 2:

Essential Modeling Techniques. Yourdon, Inc., New York, New York, 1985.

[You89] E. Yourdon. Modern Structured Analysis. Yourdon Press Computing Series. Prentice{Hall,

Englewood Cli�s, New Jersey, 1989.

