Subclasses of Formalized Data Flow Diagrams: Monogeneous, Linear, and Topologically Free Choice RDFD's

Jürgen Symanzik and Albert L. Baker

TR \#96-22
December 1996

Keywords: Decidability Problem「Computation SystemTIsomorphismFFIFO Petri Net.
(c) Copyright 1996 by Jürgen Symanzik and Albert L. Baker. All rights reserved.

Department of Computer Science
226 Atanasoff Hall
Iowa State University
Ames「Iowa 50011-1040 TUSA

1 SUBCLASSES OF FORMALIZED DATA FLOW DIAGRAMS: MONOGENEOUS, LINEAR, AND TOPOLOGICALLY FREE CHOICE RDFD'S

Abstract

Formalized Data Flow Diagrams (FDFD's) andTespecially「Reduced Data Flow Diagrams (RDFD's) are Turing equivalent ([SB96a]). Therefore Tno decidability problem can be solved for FDFD's in general. HoweverTit is possible to define subclasses of FDFD's for which decidability problems can be answered. In this paper we will define certain subclasses of FDFD'sTwhich we call Monogeneous RDFD'sCLinear RDFD'sTand Topologically Free Choice RDFD's. We will show that two of these three subclasses of FDFD's can be simulated via isomorphism by the correspondingly named subclasses of FIFO Petri Nets. It is known that isomorphisms between computation systems guarantee the same answers to corresponding decidability problems (e. g.TreachabilityTdeadlockTliveness) in the two systems ([KM82]). This means that problems where it is known that they can (not) be solved for a subclass of FIFO Petri Nets it follows immediately that the same problems can (not) be solved for the correspondingly named subclass of FDFD's.

1.1 Introduction

Formalized Data Flow Diagrams (FDFD's) as given in [LWBL96] are a relatively new approach to the formalization of traditional Data Flow Diagrams (DFD's). Recently it has been formally established that FDFD's are Turing equivalent ([SB96a]) and their non-atomic componentsTe. g. Tstores and persistent flowsTare not essential to the expressive power of FDFD's ([SB96b]). Unfortunately「this equivalence to Turing Machines prevents the analytical solution of decidability problems (e. g. TreachabilityTdeadlockT liveness) for FDFD's.

However T there exist subclasses of another computational model with the computational power of Turing Machines Γ FIFO Petri Nets (introduced in [MM81]) Γ for which decidability problems can be solved. Many variations and restrictions of the basic model of FIFO Petri Nets have been consideredT e. g. $\operatorname{Tin}[\mathrm{FM} 82] \Gamma[$ Sta83 $] \Gamma[$ Fin84 $] \Gamma[$ FR85 $] \Gamma[$ MF85 $] \Gamma[$ Fin86 $] \Gamma[$ Rou87 $] \Gamma[$ CF87 $] \Gamma[F C 88] \Gamma[F R 88]$ Гand [Fan92]. Probably the most important work done with respect to this current paper was the survey on decidability questions for subclasses of FIFO Petri Nets in [FR88]. There Γ it was established which decidability problems can be solved for which subclasses of FIFO Petri Nets typically considered in the literature Γ that is Γ Monogeneous FIFO Petri NetsएLinear FIFO Petri NetsTand Topologically Free Choice FIFO Petri Nets.

In this paper Γ we first summarize required definitions and main results for computation systems Γ FIFO Petri NetsTand decidability problems in Section 1.2. In Section 1.3Twe define subclasses of Reduced Data Flow Diagrams (RDFD's) i i. e. (Monogeneous RDFD'sTLinear RDFD'sTand Topologically Free Choice RDFD's. From [SB96a] we know that every RDFD can be simulated by a FIFO Petri Net with respect to an isomorphism h. We will show that this isomorphism h actually maps Monogeneous persistent flow-free RDFD's and Linear RDFD's onto subclasses of FIFO Petri Nets of the same names. MoreoverTfrom [KM82] we know that isomorphisms preserve many decidability problems. Therefore Γ we can conclude that a problem that is decidable for a subclass of FIFO Petri Nets is also decidable for the related subclass of FDFD's. Unfortunately「our isomorphism h does not map (Extended) Topologically Free Choice RDFD's to (Extended) Topologically Free Choice FIFO Petri Nets. We finish this paper with a summary on possible future research in Section 1.4.

1.2 Definitions

In the next two subsectionsTwe summarize definitions and results from [KM82]. Please refer to this work for a more detailed explanation of symbols and for additional definitions. A short summary of [KM82] is given in [SB96a]. We assume that the reader is familiar with [SB96a] since our notations Γ definitions Γ and proofs of theorems are closely related to this reference. In Subsections 1.2.3 and 1.2.4「 we summarize definitions for FIFO Petri Nets and related decidability problems. In Subsection 1.2.5T we deal with subclasses of FIFO Petri Nets.

1.2.1 Computation Systems

Definition (1.2.1.1): A computation system $S=(\Sigma, D, x$,) consists of a set D Tan element x of $D \Gamma$ a finite set Σ of operations Γ and a function " " from Σ to the set of partial functions from D to D. That is Γ for each $a \in \Sigma \Gamma \bar{a}$ is a partial function from D to D. The function """ is extended to Σ^{*} by $\bar{\lambda}=$ identity, $\overline{\alpha \beta}(y)=\bar{\alpha} \cdot \bar{\beta}(y)=\bar{\beta}(\bar{\alpha}(y)), \alpha \cdot \beta \in \Sigma^{*}, y \in D$.

1.2.2 Decidability Problems for Computation Systems

Definition (1.2.2.1): For a given computation system $S=(\Sigma, D, x, \overline{)}) \Gamma$ we are interested in answers to the following decidability problems:
(i) Reachability: For $y \in D$ Гis $y \in R_{S}$?
(ii) Deadlock: Does there exist an $\alpha \in C_{S}$ such that Γ for every $a \in \Sigma \Gamma \alpha a \notin C_{S}$?
(iii) Termination: Is C_{S} finite?
(iv) Finiteness: Is R_{S} finite?
(v) Equivalence of sets of computation sequences: For $y, z \in D \Gamma$ is $C_{S}(y)=C_{S}(z)$?
(vi) Liveness: For any $\alpha \in C_{S}$ and $a \in \Sigma \Gamma$ does there exist a $\beta \in \Sigma^{*}$ such that $\alpha \beta a \in C_{S}$?
(vii) Exceedability: With D a partially ordered set ${ }^{1}$ and given $y \in D \Gamma$ does there exist a $z \in R_{S}$ such that $z \geq y$?

In this definition ΓR_{S} denotes the reachability set from $x \Gamma C_{S}$ the set of all finite computation sequences from x Гand $C_{S}(y)$ the set of all finite computation sequences from y.

[^0]Definition (1.2.2.2): Let $S_{1}=\left(\Sigma_{1}, D_{1}, x_{1},{ }^{-1}\right)$ and $S_{2}=\left(\Sigma_{2}, D_{2}, x_{2},{ }^{2}\right)$ be computation systems. A homomorphism $h=(\tau, \rho): S_{1} \rightarrow S_{2}$ consists of a homomorphism $\tau: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*} \Gamma$ and an injection $\rho: D_{1} \rightarrow D_{2}$ which satisfies the following conditions:

$$
\begin{gather*}
\rho\left(x_{1}\right)=x_{2} \tag{1.2.2.2.1}\\
\forall y, z \in R_{S_{1}} \forall \alpha \in \Sigma_{1}^{*}:(y \Leftrightarrow \Rightarrow z \Rightarrow \rho(y) \stackrel{\tau(\alpha)}{\Leftrightarrow} \rho(z)) \tag{1.2.2.2.2}
\end{gather*}
$$

Definition (1.2.2.3): Let $h=(\tau, \rho): S_{1} \rightarrow S_{2}$ be a homomorphism. h is called an isomorphism if there is a homomorphism $h^{\prime}=\left(\tau^{\prime}, \rho^{\prime}\right): S_{2} \rightarrow S_{1}$ such that $h h^{\prime}: S_{2} \rightarrow S_{2}$ and $h^{\prime} h: S_{1} \rightarrow S_{1}$ are identities Γ i. e. $\Gamma \tau \tau^{\prime}: \Sigma_{2}^{*} \rightarrow \Sigma_{2}^{*} \Gamma \tau^{\prime} \tau: \Sigma_{1}^{*} \rightarrow \Sigma_{1}^{*} \Gamma \rho \rho^{\prime}: D_{2} \rightarrow D_{2} \Gamma$ and $\rho^{\prime} \rho: D_{1} \rightarrow D_{1}$ are identities.

Definition (1.2.2.4): Let H be a class of homomorphisms. Let P be a problem of the form: Given a computation system $S=(\Sigma, D, x,-) \Gamma y_{1}, \ldots, y_{n} \in D \Gamma$ whether $P\left(S, y_{1}, \ldots, y_{n}\right)$? We say that P is preserved by H under the following condition: For any S_{1} and $S_{2} \Gamma i f$ there is an $h \in H$ such that $h=(\tau, \rho): S_{1} \rightarrow S_{2}$ Гthen $P\left(S_{1}, y_{1}, \ldots, y_{n}\right)$ holds ifTand only ifT $P\left(S_{2}, \rho\left(y_{1}\right), \ldots, \rho\left(y_{n}\right)\right)$ holds.

Theorem (1.2.2.5): Particular types of homomorphisms preserve the following decidability problems:
(i) A spanning homomorphism preserves reachability.
(ii) A spanning homomorphism preserves deadlock.
(iii) A spanning homomorphism preserves the termination property.
(iv) A surjective homomorphism preserves finiteness.
(v) A principal homomorphism preserves equivalence of sets of computation sequences.
(vi) A principal homomorphism preserves liveness.
(vii) An order preserving spanning homomorphism preserves exceedability.

Proof: Proofs are given in [KM82]TSection 4.

It should be noted that an isomorphism h is also a bijective (hence injectiveTsurjectiveThence spanning) Ilength preservingTand principal homomorphism. Thus「an isomorphism h preserves decidability problems (i) to (vi).

1.2.3 FIFO Petri Nets

In some sense \boldsymbol{T} FIFO Petri Nets (introduced in [MM81]) are Petri Nets (see [Pet81] Cfor example) where places contain words instead of tokens and arcs are labelled by words. More formallyTwe make use of the definition of FIFO Petri Nets as given in [Rou87].

Definition (1.2.3.1): A FIFO Petri Net is a quintuple $F P N=(P, T, B, F, Q)$ where P is a finite set of places (also called queues) ΓT is a finite set of transitions (disjoint from P) ΓQ is a finite queue alphabet Γ and $F: T \times P \rightarrow Q^{*}$ and $B: P \times T \rightarrow Q^{*}$ are two mappings called respectively forward and backward incidence mappings.

Definition (1.2.3.2): A marking M of a FIFO Petri Net is a mapping $M: P \rightarrow Q^{*}$.
A transition t is fireable in M Twritten $M(t>\operatorname{Tif} \forall p \in P: B(p, t) \leq M(p)$ (where $u \leq x$ means u is a prefix of \boldsymbol{x}).

For a marking M Twe define the firing of a transition t Twritten $M\left(t>M^{\prime}\right.$ 「if $M(t>$ and the following equation between words holds $\forall p \in P: B(p, t) M^{\prime}(p)=M(p) F(t, p)$. That means Γ the firing of a transition t removes $B(p, t)$ from the head of $M(p)$ and appends $F(t, p)$ to the end of the resulting word.

Definition (1.2.3.3): A FIFO Petri Net $F P N$ together with an initial marking $M_{0}: P \rightarrow Q^{*}$ is called a marked FIFO Petri Net and is denoted by (FPN, M M_{0}).

As usual denote by $F S\left(F P N, M_{0}\right)$ the set of firing sequences of this FIFO Petri Net. The firing of a sequence u of transitions from a marking M to a marking M^{\prime} is written as $M\left(u>M^{\prime}\right.$.

The set of markings that are reachable from M_{0} is called reachability set and it is denoted by $\operatorname{Acc}\left(F P N, M_{0}\right)$.

In addition Tthe following two definitions from [FR88] are used within this paper:

Definition (1.2.3.4): Let $R\left(F P N, M_{0}\right)$ denote the set of all markings that are reachable from $M_{0} \Gamma$ i. e. $\Gamma R\left(F P N, M_{0}\right)=\left\{M \mid \exists x \in T^{*}: M_{0}(x>M\}\right.$. Let $L\left(F P N, M_{0}\right)$ denote the language of the net or the set of all sequences in T^{*} that are fireable from $M_{0} \Gamma$ i. e. $\Gamma L\left(F P N, M_{0}\right)=\left\{x \mid x \in T^{*} \wedge M_{0}(x>\}\right.$. An element $x \in T^{*}$ is said to be in the center of $\left(F P N, M_{0}\right) \Gamma$ denoted by $C\left(F P N, M_{0}\right)$ TifTand only ifT $M_{0}(x>M$ and $L(F P N, M)$ is infinite.

However in accordance with many other references Γ we prefer the abbreviations $F S$ for the set of firing sequences (language (set of computation sequences) and $R S$ for the reachability set. ThereforeTwe denote by $F S\left(F P N, M_{0}\right)$ what is denoted by $L\left(F P N, M_{0}\right)$ in [FR88] and we denote by $R S\left(F P N, M_{0}\right)$ what is denoted by $R\left(F P N, M_{0}\right)$ in [FR88] and by $\operatorname{Acc}\left(F P N, M_{0}\right)$ in [Rou87].

Definition (1.2.3.5): The input language of a place p in $\left(F P N, M_{0}\right)$ is defined as $L_{I}\left(F P N, M_{0}, p\right)=$ $h_{p}\left(F S\left(F P N, M_{0}\right)\right)$ with $h_{p}(t)=F(t, p)$.

1.2.4 Decidability Problems for FIFO Petri Nets

The following definition is due to [FR88].

Definition (1.2.4.1): For a given marked FIFO Petri Net ($F P N, M_{0}$) Γ we define the following decidability problems:

Total Deadlock Problem (TDP): Is $F S\left(F P N, M_{0}\right)$ finite?

Partial Deadlock Problem (PDP): Is there a finite path in (FPN, M_{0}) that can not be extended Γ i. e. Γ does there exist an $x \in T^{*}$ such that $M_{0}(x>M$ where no transition in T is fireable from $M ?$

Boundedness Problem (BP): Is $R S\left(F P N, M_{0}\right)$ finite?

Reachability Problem (RP): For a marking M Tis $M \in R S\left(F P N, M_{0}\right)$?

Quasi-Liveness Problem (QLP): $\forall t \in T$ Tis there an $x \in T^{*}$ such that $M_{0}(x t>?$

Liveness Problem (LP): $\forall M \in R S\left(F P N, M_{0}\right) \quad \forall t \in T$ Tis there an $x \in T^{*}$ such that $M(x t>$?

Center Problem (CP): Is there an algorithm that will generate a recursive representation of $C\left(F P N, M_{0}\right) ?$

Regularity Problem ($\mathbf{R e g} \mathbf{P}$): Is $F S\left(F P N, M_{0}\right)$ regular?

UnfortunatelyTnames for decidability problems for computation systems in [KM82] and FIFO Petri Nets in [FR88] differ. Other terms can be found within the literature. It should be noted that the following names for decidabilty problems are identical:

Computation Sytsem	FIFO Petri Net
Reachability	RP
Deadlock	PDP
Termination	TDP
Finiteness	BP
Equivalence	
Liveness	LP
Exceedability	QLP
	CP

1.2.5 Subclasses of FIFO Petri Nets

In this subsectionTwe summarize definitions and theorems related to Monogeneous FIFO Petri Nets (e. g. $\Gamma[$ Sta83 $] \Gamma[$ Fin84 $] \Gamma[$ MF85 $] \Gamma[$ Fin86 $] \Gamma[$ Rou87 $] \Gamma[$ FR88 $]) \Gamma$ Linear FIFO Petri Nets (e. g. $\Gamma[$ CF87 $] \Gamma[$ FR88 $]) \Gamma$ and and (Extended) Topologically Free Choice FIFO Petri Nets (e. g. Г[Fin86] [[Rou87]Г[FC88] [[FR88]).

Monogeneous FIFO Petri Nets

In this partTwe follow the notation in [Fin86] and [FR88].

Definition (1.2.5.1): Let A be a finite alphabet. Let L be a language on A. Let x and y be words in L. x is called a left factor of $y \Gamma x \leq y$ in symbols Γ if \exists word $z \in A^{*}: x z=y$.

For a language $L \subset A^{*} \Gamma$ we denote by LeftFactor (L) the set of all left factors of words in $L \Gamma i$. e. Γ LeftFactor $(L)=\left\{x \in A^{*} \mid \exists y \in L: x \leq y\right\}$.

Definition (1.2.5.2): Let A be a finite alphabet.
A language $L \subset A^{*}$ is called strictly monogeneous if \exists words $u, v \in A^{*}: L \subset \operatorname{LeftFactor(uv^{*}).}$
A language $L \subset A^{*}$ is called monogeneous if it is equal to a finite union of strictly monogeneous languagesTi. e. $\Gamma L \subset \bigcup_{i=1, \ldots, k}$ LeftFactor $\left(u_{i} v_{i}^{*}\right)$ where $\forall i \in\{1, \ldots, k\}: u_{i}, v_{i} \in A^{*}$.

Definition (1.2.5.3): Let $\left(F P N, M_{0}\right)$ be a marked FIFO Petri Net. Let $p \in P$ be a place of FPN.

- p is called structurally monogeneous Γ if \exists word $u_{p} \in A^{*}$ such that $\forall t \in T: F(t, p) \in u_{p}^{*}$.
- p is called strictly monogeneous if $L_{I}\left(F P N, M_{0}, p\right)$ is strictly monogeneous.
- p is called monogeneous if $L_{I}\left(F P N, M_{0}, p\right)$ is monogeneous.
(FPN, M_{0}) is called a Monogeneous (Structurally Monogeneous Γ Strictly Monogeneous Γ respectively) FIFO Petri Net ifT and only ifTeach of its places is monogeneous (structurally monogeneousTstrictly monogeneousTrespectively).

Unfortunately t there exists no common understanding of these terms in the literature. In [Rou87] for example Γ the term monogeneous is used instead of strictly monogeneous and semi-monogeneous is used instead of monogeneous. Even more confusingTin [Sta83] and [Fin84] the term monogeneous is used for the weaker structurally monogeneous.

While undecidable in the general case $[$ [Fin86] provides many sufficient and necessary conditions for a FIFO Petri Net to be monogeneous.

Linear FIFO Petri Nets

In this partTwe follow the notation in [FR88].

Definition (1.2.5.4): Let A be a finite alphabet. A language $L \subset A^{*}$ is called bounded or linear if L is included in $a_{1}^{*} \ldots a_{n}^{*}$ for some $a_{1}, \ldots, a_{n} \in A$ with $\forall i \neq j: a_{i} \neq a_{j}$.

Definition (1.2.5.5): Let $\left(F P N, M_{0}\right)$ be a marked FIFO Petri Net. Let $p \in P$ be a place of $F P N . p$ is called linear if its input language is bounded.
(FPN, M_{0}) is called a Linear FIFO Petri Net (LFPN) ifTand only ifTeach of its places is linear and has as its initial marking an element of a_{1}^{*}.

Definition (1.2.5.6): Let $\left(F P N, M_{0}\right)$ be a marked LFPN with $F P N=(P, T, B, F, Q)$. Let $S M$ be a set of markings over P.SM is called a Structured Set of Terminal Markings (SSTM) with respect to ($F P N, M_{0}$) ifTand only if:
(i) membership in $S M$ is decidable Γ
(ii) $M_{0} \in S M \Gamma$
(iii) $\forall x, y \in T^{*}:\left(M_{0}\left(x y>M \wedge M_{0}\left(x>M^{\prime} \wedge M \in S M\right) \Rightarrow M^{\prime} \in S M\right.\right.$ (i. e. Teach marking reached on a path into $S M$ must be in $S M$) Гand
(iv) $\forall x \in T^{*}:\left(M \in S M \wedge M\left(x^{i}>M_{i}, i \geq 1 \wedge M \leq M_{1} \wedge M_{1} \in S M\right) \Rightarrow \forall i \geq 1: M_{i} \in S M\right.$ (i. e. Гany sequence of transitions which when applied to a marking in $S M$ terminates at another marking in $S M$ and can be repeated indefinitely without leaving $S M$).

The notation $M \leq M_{1}$ relates to the definition of left factors. $M \leq M_{1}$ ifTand only ifTfor all places $p \in P$ the marking M of p is a left factor of the marking M_{1} of p.

Definition (1.2.5.7): Let $\left(F P N, M_{0}\right)$ be a marked LFPN with $F P N=(P, T, B, F, Q)$. Let $S M$ be a structured set of terminal markings over $P .\left(F P N, M_{0}, S M\right)$ is called a Linear FIFO Petri Net having a Structured Set of Terminal Markings (SSTM-LFPN). The set of firing sequences (language) of $\left(F P N, M_{0}, S M\right)$ is $F S\left(F P N, M_{0}, S M\right)=\left\{x \mid x \in T^{*}, M_{0}(x>M, M \in S M\}\right.$.

The reachability tree for ($F P N, M_{0}, S M$) is simply the reachability tree for ($F P N, M_{0}$) pruned by truncating a path whenever it leaves $S M$. Therefore Γ the following holds for the reachability set of $\left(F P N, M_{0}, S M\right):$

$$
R S\left(F P N, M_{0}, S M\right)=R S\left(F P N, M_{0}\right) \cap S M
$$

Topologically Free Choice FIFO Petri Nets

In this partTwe follow the notation in [FC88].

Definition (1.2.5.8): Let $\left(F P N, M_{0}\right)$ be a marked FIFO Petri Net. Let $p \in P$ be a place of the FIFO Petri Net.

- The input alphabet of p is the set of all letters that appear in the valuation of at least one input arc of p.
- The output alphabet of p is the set of all letters appearing in the valuations of the output arcs.
- The alphabet of p Гdenoted by $A_{p} \Gamma$ is the union of the input alphabet and the output alphabet.

Definition (1.2.5.9): Let $\left(F P N, M_{0}\right)$ be a marked FIFO Petri Net. Let $p \in P$ be a place and $t \in T$ be a transition of the FIFO Petri Net. We define:

$$
\begin{aligned}
\Gamma(p) & =\{v \in T \mid B(p, v) \neq \lambda\} \\
\Gamma(t) & =\{v \in P \mid F(t, v) \neq \lambda\} \\
\Gamma^{-}(p) & =\{v \in T \mid F(v, p) \neq \lambda\} \\
\Gamma^{-}(t) & =\{v \in P \mid B(v, t) \neq \lambda\}
\end{aligned}
$$

Definition (1.2.5.10): Let $\left(F P N, M_{0}\right)$ be a marked FIFO Petri Net. ($F P N, M_{0}$) is called normalized if the following three conditions are satisfied:
(i) Each place $p \in P$ is balancedTi. e. Tthe input alphabet is identical to the output alphabet.
(ii) $\forall p \in P \forall t \in \Gamma(p): B(t, p) \in Q \Gamma i$. e. Teach place is semi-alphabetic.
(iii) $\forall p \in P: M_{0}(p) \in A_{p}^{*}$.

Definition (1.2.5.11): Hack's condition for free choice Petri Nets reads as follows: A place p in a Petri Net is free choice ifTand only ifTwe have:

$$
|\Gamma(p)|>1 \Rightarrow \forall t \in \Gamma(p): \Gamma^{-}(t)=\{p\}
$$

Definition (1.2.5.12): Let $\left(F P N, M_{0}\right)$ be a marked FIFO Petri Net. ($F P N, M_{0}$) is called an Extended Topologically Free Choice FIFO Petri Net (ETFC-FPN) ifT and only ifT the following two conditions are satisfied:

- ($F P N, M_{0}$) is normalized.
- $\forall p \in P:\left|A_{p}\right|>1 \Rightarrow p$ satisfies the Hack's condition.

1.3 Subclasses of Formalized Data Flow Diagrams

We assume that the reader is familiar with the concept of FDFD's given in [LWBL96] and [SB96a]. A short summary of [LWBL96] and definitions of Reduced Data Flow Diagrams (RDFD's) and persistent flow-free Reduced Data Flow Diagrams (PFF-RDFD's) is given in [SB96a] as well. Here (we will only provide three basic definitions related to FDFD's.

Definition (1.3.1): A Formalized Data Flow Diagram (FDFD) is a quintuple

$$
F D F D=(B, F L O W N A M E S, T Y P E S, P, F)
$$

where B is a set of bubbles Γ FLOWNAMES is a set of flows Γ TYPES is a set of types ΓP is the set \{persistent Γ consumable $\}$ and $F=B \times F L O W N A M E S \times T Y P E S \times B \times P$. The following notational convention for members from these domains is used: $b \in B, f n \in$ FLOWNAMES,T \in TYPES, $p \in$ $P, f \in F$.

Definition (1.3.2): A firing sequence (computation sequence) of an FDFD is a possibly infinite sequence $\left(b_{i}, a_{i}, j_{i}\right) \in B \times\{C, P\} \times N, i \geq 0$, such that $\Gamma i f$ transition $\left(b_{i}, a_{i}, j_{i}\right)$ is fired in state $(b m, r, f s) \Gamma$ then

$$
\begin{aligned}
& \left(f s^{\prime}, r^{\prime}\right)= \begin{cases}\left(\text { Consume }\left(b_{i}\right)\right)_{j_{i}}(f s, r), & \text { if } a_{i}=C \\
\left(\text { Produce }\left(b_{i}\right)\right)_{j_{i}}(f s, r), & \text { if } a_{i}=P\end{cases} \\
& b m^{\prime}\left(b_{i}\right)= \begin{cases}\text { working, } & \text { if } a_{i}=C \\
\text { idle, } & \text { if } a_{i}=P\end{cases} \\
& b m^{\prime}(b)=b m(b) \quad \forall b \in B \Leftrightarrow\left\{b_{i}\right\}
\end{aligned}
$$

and

$$
(b m, r, f s) \rightarrow\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)
$$

We introduce the notation $(b m, r, f s)[(b, a, j)]$ to indicate that transition (b, a, j) is fireable in state $(b m, r, f s)$ and $(b m, r, f s)[(b, a, j)]\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)$ to indicate that state $\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)$ is reached upon the firing of transition (b, a, j) in state $(b m, r, f s)$.

By induction Twe extend this notation for firing sequences:

$$
\left(b m_{0}, r_{0}, f s_{0}\right)\left[\left(b_{1}, a_{1}, j_{1}\right), \ldots,\left(b_{n-1}, a_{n-1}, j_{n-1}\right),\left(b_{n}, a_{n}, j_{n}\right)\right]
$$

is used to indicate that transition $\left(b_{n}, a_{n}, j_{n}\right)$ is fireable in state $\left(b m_{n-1}, r_{n-1}, f s_{n-1}\right)$ Tgiven that

$$
\left(b m_{0}, r_{0}, f s_{0}\right)\left[\left(b_{1}, a_{1}, j_{1}\right), \ldots,\left(b_{n-1}, a_{n-1}, j_{n-1}\right)\right]\left(b m_{n-1}, r_{n-1}, f s_{n-1}\right)
$$

holds. By analogyTwe use

$$
\left(b m_{0}, r_{0}, f s_{0}\right)\left[\left(b_{1}, a_{1}, j_{1}\right), \ldots,\left(b_{n}, a_{n}, j_{n}\right)\right]\left(b m_{n}, r_{n}, f s_{n}\right)
$$

to indicate that state $\left(b m_{n}, r_{n}, f s_{n}\right)$ is reached upon the firing of the sequence $\left(b_{1}, a_{1}, j_{1}\right), \ldots,\left(b_{n}, a_{n}, j_{n}\right)$.

Definition (1.3.3): The set of firing sequences (set of computation sequences, language) of an FDFD Γ denoted by $F S\left(F D F D, \gamma_{\text {initial }}\right)$ Tis the set containing all firing sequences that are possible for this FDFD Гgiven $\gamma_{\text {initial }}=\left(b m_{\text {initial }}, r_{\text {initial }}, f s_{\text {initial }}\right)=\left(b m_{0}, r_{0}, f s_{0}\right) \Gamma i$. e. Γ

$$
F S\left(F D F D, \gamma_{\text {initial }}\right)=\left\{s \mid s \in(B \times\{C, P\} \times I N)^{*} \wedge \gamma_{\text {initial }}[s]\right\}
$$

An element $s \in(B \times\{C, P\} \times N)^{*}$ is said to be in the center of $\left(F D F D, \gamma_{\text {initial }}\right) \Gamma$ denoted by $C\left(F D F D, \gamma_{\text {initial }}\right)$ Γ ifT and only ifT $\gamma_{\text {initial }}[s] \gamma$ and $F S(F D F D, \gamma)$ is infinite.

We give the next definition in analogy to Definition (1.2.4.1):

Definition (1.3.4): For a given FDFD with initial state $\gamma_{\text {initial }}=\left(b m_{\text {initial }}, r_{\text {initial }}, f s_{\text {initial }}\right)$)we define the following decidability problems:

Total Deadlock Problem (TDP): Is $F S\left(F D F D, \gamma_{\text {initial }}\right)$ finite?

Partial Deadlock Problem (PDP): Is there a finite path in (FDFD, $\gamma_{\text {initial }}$) that can not be extendedTi. e. Γ does there exist an $s \in(B \times\{C, P\} \times N)^{*}$ such that $\gamma_{\text {initial }}[s] \gamma$ where no transition $(b, a, j) \in(B \times\{C, P\} \times I N)$ is fireable in state $\gamma ?$

Boundedness Problem (BP): Is $R S\left(F D F D, \gamma_{\text {initial }}\right)$ finite?

Reachability Problem (RP): For a state $\gamma \operatorname{Tis} \gamma \in R S\left(F D F D, \gamma_{\text {initial }}\right)$?

Quasi-Liveness Problem (QLP): $\forall(b, a, j) \in(B \times\{C, P\} \times N)$ Tis there an $s \in(B \times\{C, P\} \times \mathbb{N})^{*}$ such that $\gamma_{\text {initial }}[s,(b, a, j)]$?

Liveness Problem (LP): $\forall \gamma \in R S\left(F D F D, \gamma_{\text {initial }}\right) \quad \forall(b, a, j) \in(B \times\{C, P\} \times N) \Gamma$ is there an $s \in(B \times\{C, P\} \times I N)^{*}$ such that $\gamma[s,(b, a, j)] ?$

Center Problem (CP): Is there an algorithm that will generate a recursive representation of $C\left(F D F D, \gamma_{\text {initial }}\right) ?$

Regularity Problem (RegP): Is $F S\left(F D F D, \gamma_{\text {initial }}\right)$ regular?

1.3.1 Monogeneous (PFF-)RDFD's

Our definitions of Monogeneous (PFF-)RDFD's are related to the definitions of monogeneous languages and Monogeneous FIFO Petri Nets as given in [Fin86] and [FR88]Tsummarized in Subsection 1.2.5.

Definition (1.3.1.1): For each flow $f \in F$ of an FDFD Γ we define

$$
\text { If }:(B \times\{C, P\} \times I N) \times(\text { BubbleMode } \times \text { Read } \times \text { FlowState }) \rightarrow \text { OBJECTS } \cup\{<>\}
$$

such that

$$
I_{f}((b, a, j),(b m, r, f s))= \begin{cases}o, & \text { if } a=P \text { and }(\operatorname{Produce}(b))_{j}=\operatorname{Out}(o, f, b)(f s, r) \\ <>, & \text { otherwise }\end{cases}
$$

where $(b, a, j) \in(B \times\{C, P\} \times N)$ is a transition and $(b m, r, f s) \in($ BubbleMode \times Read \times FlowState $)$ is a state of the FDFD.

By inductionTwe define I_{f} for firing sequences:

$$
I_{f}:(B \times\{C, P\} \times I N)^{n+1} \times(\text { BubbleMode } \times \text { Read } \times \text { FlowState }) \rightarrow(\text { OBJECTS } \cup\{<>\})^{*}
$$

such that

$$
\begin{aligned}
& I_{f}\left(\left(\left(b_{0}, a_{0}, j_{0}\right), \ldots,\left(b_{n-1}, a_{n-1}, j_{n-1}\right),\left(b_{n}, a_{n}, j_{n}\right)\right),(b m, r, f s)\right)= \\
& \quad I_{f}\left(\left(\left(b_{0}, a_{0}, j_{0}\right), \ldots,\left(b_{n-1}, a_{n-1}, j_{n-1}\right)\right),(b m, r, f s)\right) \circ I_{f}\left(\left(b_{n}, a_{n}, j_{n}\right),\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)\right) \Gamma
\end{aligned}
$$

where $(b m, r, f s)\left[\left(b_{0}, a_{0}, j_{0}\right), \ldots,\left(b_{n-1}, a_{n-1}, j_{n-1}\right)\right]\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)$ and "o" means the concatenation of words. Finally「the input language of a flow $f \in F$ of an FDFD with initial state $\gamma_{\text {initial }}=\left(b m_{\text {initial }}, r_{\text {initial }}, f s_{\text {initial }}\right)$ is defined as

$$
\begin{aligned}
\tilde{I}_{f} & :=I_{f}\left(F S\left(F D F D, \gamma_{\text {initial }}\right), \gamma_{\text {initial }}\right) \\
& =\left\{I_{f}\left(s, \gamma_{\text {initial }}\right) \mid s \in F S\left(F D F D, \gamma_{\text {initial }}\right)\right\}
\end{aligned}
$$

Definition (1.3.1.2): Let $f \in F$ be a flow of an FDFD.

- f is called structurally monogeneous if $\exists u_{f} \in O B J E C T S \cup\{<>\} \forall(b, a, j) \in(B \times\{C, P\} \times$ N) $\forall(b m, r, f s) \in($ BubbleMode \times Read \times FlowState $)$:
$I_{f}((b, a, j),(b m, r, f s))= \begin{cases}u_{f}, & \text { if } a=P \text { and }(\operatorname{Produce}(b))_{j}=\operatorname{Out}\left(u_{f}, f, b\right)(f s, r) \\ <>, & \text { otherwise }\end{cases}$
- f is called strictly monogeneous if \tilde{I}_{f} is strictly monogeneous.
- f is called monogeneous if \tilde{I}_{f} is monogeneous.

A structurally monogeneous flow of an FDFD is more restricted than a structurally monogenous place of a FIFO Petri Net. In the FDFDTa single object $u_{f} \in O B J E C T S$ (or nothing) is appended to the flow Twhile in the FIFO Petri Net an entire word $u_{p} \in A^{*}$ can be appended to the place. This
limited behavior of the FDFD is caused by the built-in restrictions on Produce (see [LWBL96]) that do not allow expressions such as $\operatorname{Out}\left(u_{f}, f, X\right)\left(\operatorname{Out}\left(u_{f}, f, X\right)(f s, r)\right)$ Гi. e. Teach outflow f can be addressed at most once in a single Produce case of bubble X.

Definition (1.3.1.3): A (PFF-)RDFD is called a Monogeneous (Structurally Monogeneous Γ Strictly Monogeneous Γ respectively) (PFF-)RDFD ifT and only ifT each of its flows $f \in F$ is monogeneous (structurally monogeneous Γ strictly monogeneous Γ respectively).

Note that every Structurally Monogeneous (PFF-)RDFD is also a Strictly Monogeneous (PFF-) RDFDTwhich is also a Monogeneous (PFF-)RDFDTi. e. TMonogeneous (PFF-)RDFD's are the most general of these subclasses. If we state that a condition holds for Monogeneous (PFF-)RDFD's this obviously includes Structurally Monogeneous (PFF-)RDFD's and Strictly Monogeneous (PFF-)RDFD's.

Example (1.3.1.4): This example of an PFF-RDFD presents a simple communication protocol. Each participant ΓA and B Ccan initiate the communication but then has to wait for an acknowledgement from the other participant that matches its own message. It should be obvious that in this example we always have $\operatorname{Head}(f s(B A))=\operatorname{Head}\left(f s\left(\operatorname{last}_{A}\right)\right)$ if both are not $\perp \Gamma$ and $\operatorname{Head}(f s(A B))=\operatorname{Head}\left(f s\left(\operatorname{last} t_{B}\right)\right)$ if both are not \perp. In a system where erraneous channels are modeled instead of flows $A B$ and $B A \Gamma$ the current specification of bubbles A and B will most likely produce several deadlock states. The mappings Enabled Γ Consume Tand Produce for the FDFD shown in Figure 1.1 are defined as:

Enabled $(A)=\lambda f s$.

$$
\begin{aligned}
& \left(\neg I s E m p t y\left(\text { init }_{A}\right) \wedge \operatorname{Head}\left(f s\left(\text { init }_{A}\right)\right)=a\right) \\
& \vee(\neg \operatorname{IsEmpty}(B A) \wedge \operatorname{Head}(f s(B A))=a \\
& \left.\quad \wedge \neg \operatorname{IsEmpty}\left(\text { last }_{A}\right) \wedge \operatorname{Head}\left(f_{s}\left(\text { last }_{A}\right)\right)=a\right) \\
& \vee\left(\neg \operatorname{IsEmpty}(B A) \wedge \operatorname{Head}(f s(B A))=b^{\left.\quad \wedge \neg I s E m p t y\left(\text { last }_{A}\right) \wedge \operatorname{Head}\left(f s\left(\text { last }_{A}\right)\right)=b\right)}\right.
\end{aligned}
$$

Enabled $(B)=\lambda f s$.

$$
\left(\neg \operatorname{IsEmpty}\left(\text { init }_{B}\right) \wedge \operatorname{Head}\left(f_{s}\left(\text { init }_{B}\right)\right)=a\right)
$$

$$
\vee(\neg I s E m p t y(A B) \wedge \operatorname{Head}(f s(A B))=a
$$

$$
\left.\wedge \neg I s E m p t y\left(\text { last }_{B}\right) \wedge \operatorname{Head}\left(f s\left(\text { last }_{B}\right)\right)=a\right)
$$

$$
\vee(\neg \operatorname{IsEmpty}(A B) \wedge \operatorname{Head}(f s(A B))=b
$$

$$
\left.\wedge \neg I s E m p t y\left(\text { last }_{B}\right) \wedge \operatorname{Head}\left(f s\left(\text { last }_{B}\right)\right)=b\right)
$$

Figure 1.1: Example of a Strictly Monogeneous PFF-RDFD.
$\operatorname{Consume}(A)=\lambda(f s, r)$.
$\left\{\right.$ if $\left(\neg \operatorname{IsEmpty}\left(\right.\right.$ init $\left._{A}\right) \wedge \operatorname{Head}\left(f s\left(\right.\right.$ init $\left.\left.\left._{A}\right)\right)=a\right)$
then $\operatorname{In}\left(\right.$ init $\left._{A}, A\right)(f s, r)$
fi,
if $(\neg \operatorname{IsEmpty}(B A) \wedge \operatorname{Head}(f s(B A))=a$

$$
\left.\wedge \neg I s E m p t y\left(\text { last }_{A}\right) \wedge \operatorname{Head}\left(f_{s}\left(\text { last }_{A}\right)\right)=a\right)
$$

then $\operatorname{In}(B A, A)\left(\operatorname{In}\left(\right.\right.$ last $\left.\left._{A}, A\right)(f s, r)\right)$
(АГСГ2)
fi,
if $(\neg \operatorname{IsEmpty}(B A) \wedge \operatorname{Head}(f s(B A))=b$

$$
\begin{equation*}
\left.\wedge \neg I s E m p t y\left(\text { last }_{A}\right) \wedge \operatorname{Head}\left(f s\left(\text { last }_{A}\right)\right)=b\right) \tag{АГСГ3}
\end{equation*}
$$

then $\operatorname{In}(B A, A)\left(\operatorname{In}\left(\right.\right.$ last $\left.\left._{A}, A\right)(f s, r)\right)$
fi
\}
Consume $(B)=\lambda(f s, r)$.
$\left\{\right.$ if $\left(\neg \operatorname{IsEmpty}\left(\right.\right.$ init $\left._{B}\right) \wedge \operatorname{Head}\left(f s\left(\right.\right.$ init $\left.\left.\left._{B}\right)\right)=a\right)$
then $\operatorname{In}\left(\right.$ init $\left._{B}, B\right)(f s, r)$
fi,
if $(\neg \operatorname{IsEmpty}(A B) \wedge \operatorname{Head}(f s(A B))=a$

$$
\left.\wedge \neg I s E m p t y\left(\text { last }_{B}\right) \wedge \operatorname{Head}\left(f s\left(\text { last }_{B}\right)\right)=a\right)
$$

then $\operatorname{In}(A B, B)\left(\operatorname{In}\left(\right.\right.$ last $\left.\left._{B}, B\right)(f s, r)\right)$
fi,
if $(\neg \operatorname{IsEmpty}(A B) \wedge \operatorname{Head}(f s(A B))=b$

$$
\left.\wedge \neg \operatorname{IsEmpty}\left(\text { last }_{B}\right) \wedge \operatorname{Head}\left(f_{s}\left(\text { last }_{B}\right)\right)=b\right)
$$

then $\operatorname{In}(A B, B)\left(\operatorname{In}\left(\right.\right.$ last $\left.\left._{B}, B\right)(f s, r)\right)$
(ВГСГ3)
fi
\}
$\operatorname{Produce}(A)=\lambda(f s, r)$.
$\left\{\right.$ if $r(A)\left(\right.$ init $\left._{A}\right)=a$
then $\operatorname{Out}(a, A B, A)\left(O u t\left(a\right.\right.$, last $\left.\left._{A}, A\right)(f s, r)\right)$
(АГРГ1)
fi,
if $r(A)(B A)=a \wedge r(A)\left(\right.$ last $\left._{A}\right)=a$
then $\operatorname{Out}(b, A B, A)\left(O u t\left(b\right.\right.$, last $\left.\left._{A}, A\right)(f s, r)\right)$
fi,
if $r(A)(B A)=b \wedge r(A)\left(\right.$ last $\left._{A}\right)=b$
then $\operatorname{Out}(a, A B, A)\left(\operatorname{Out}\left(a\right.\right.$, last $\left.\left._{A}, A\right)(f s, r)\right)$
(АГРГ3)
fi
\}
$\operatorname{Produce}(B)=\lambda(f s, r)$.
$\left\{\right.$ if $r(B)\left(\right.$ init $\left._{B}\right)=a$
then $\operatorname{Out}(a, B A, B)\left(\operatorname{Out}\left(a\right.\right.$, last $\left.\left._{B}, B\right)(f s, r)\right)$
(ВГРГ1)
fi,
if $r(B)(A B)=a \wedge r(B)\left(\right.$ last $\left._{B}\right)=a$
then $\operatorname{Out}(b, B A, B)\left(\operatorname{Out}\left(b\right.\right.$, last $\left.\left._{B}, A\right)(f s, r)\right)$
fi,
if $r(B)(B A)=b \wedge r(A)\left(\right.$ last $\left._{B}\right)=b$
then $\operatorname{Out}(a, B A, B)\left(\operatorname{Out}\left(a\right.\right.$, last $\left.\left._{B}, B\right)(f s, r)\right)$
(ВГРГ3)
fi
\}
InitiallyГinit A_{A} and init $_{B}$ contain an a. All other flows are empty. Valid firing sequences are Γ for example Γ $(A, C, 1),(A, P, 1),(B, C, 1),(B, P, 1)$,

$$
\begin{aligned}
& (A, C, 2),(A, P, 2),(B, C, 2),(B, P, 2),(A, C, 3),(A, P, 3),(B, C, 3),(B, P, 3), \\
& (A, C, 2),(A, P, 2),(B, C, 2),(B, P, 2),(B, C, 3),(B, P, 3),(A, C, 3),(A, P, 3), \ldots
\end{aligned}
$$

and
$(B, C, 1),(A, C, 1),(A, P, 1),(B, P, 1)$,
$(B, C, 2),(B, P, 2),(A, C, 2),(A, P, 2),(A, C, 3),(B, C, 3),(B, P, 3),(A, P, 3)$,
$(A, C, 2),(B, C, 2),(B, P, 2),(A, P, 2),(B, C, 3),(A, C, 3),(B, P, 3),(A, P, 3), \ldots$.
We have $\tilde{I}_{\text {init }_{A}}=\tilde{I}_{\text {init }_{B}}=\{a\}$ and $\tilde{I}_{A B}=\tilde{I}_{B A}=\tilde{I}_{\text {last }_{A}}=\tilde{I}_{\text {last }_{B}}=\operatorname{LeftFactor}\left((a b)^{*}\right)$. ThusTflows init A_{A} and init $_{B}$ are structurally monogeneous Fand flows $A B \Gamma B A \Gamma$ last A_{A} Гand last ${ }_{B}$ are strictly monogeneous. Overallए the PFF-RDFD is strictly monogeneous.

Theorem (1.3.1.5): Every Monogeneous (Structurally Monogeneous Strictly Monogeneous Γ respectively) PFF-RDFD can be simulated by a Monogeneous (Structurally MonogeneousT Strictly MonogeneousTrespectively) FIFO Petri Net with respect to an isomorphism h.

Proof: In [SB96a] it has been shown that every PFF-RDFD can be simulated by a FIFO Petri Net with respect to an isomorphism h. Therefore Γ we only have to show that this isomorphism h maps every monogeneous (structurally monogeneous Γ strictly monogeneous Γ respectively) flow $f \in F$ of the PFF-RDFD to a monogeneous (structurally monogeneousTstrictly monogeneousTrespectively) place of the FIFO Petri Net.

First [we want to recall from [SB96a] that the set of places $P_{F P N}$ of the related FIFO Petri Net can be split into three disjoint subsets (i) representing the flows of the PFF-RDFDT(ii) the idle working mode of the bubble Cand (iii) the working working mode (including the values that have been read) of the bubbleГi. e. Γ

$$
\begin{aligned}
& P_{F P N}=\left\{f_{1}, \ldots, f_{f}\right\} \\
& \qquad\left\{b_{1, i d l e}, \ldots, b_{b, i d l e}\right\} \\
& \cup \bigcup_{i \in\{1, \ldots, b\}}\left(\left\{b_{i, w o r k i n g: 1} \mid \text { Consume }\left(b_{i}\right) \text { is of type } C_{1}\right\}\right. \\
& \\
& \cup\left\{b_{i, w o r k i n g: 1}, \ldots, b_{i, w o r k i n g: m_{i}} \mid \text { Consume }\left(b_{i}\right) \text { is of type } C_{2} \Gamma\right. \\
& \left.\left.m_{i}=\left(\# \text { of cases in Consume }\left(b_{i}\right)\right)\right\}\right)
\end{aligned}
$$

Now Twe consider each of the subsets of places in $P_{F P N}$ Twith h given as in Theorem (3.1.1) in [SB96a]:
(i) $p \in\left\{f_{1}, \ldots, f_{f}\right\}$:

Since $M_{F P N}(p)=f s(p)$ by definitionTthe contents of each place of the FIFO Petri Net is identical to the contents of the corresponding flow of the PFF-RDFD. Also Ca new value is appended to
place p ifT and only ifT the related value is appended to the corresponding flow. Hence Γ since flow p is monogeneous (structurally monogeneous Γ strictly monogeneous Γ respectively) Γ place p is monogeneous (structurally monogeneous $\overline{\text { strictly }}$ monogeneous Γ respectively) Γ too.
(ii) $p \in\left\{b_{1, i d l e}, \ldots, b_{b, i d l e}\right\}$:

The only value that is appended to place p is I. Therefore Γp is structurally monogeneous (which implies that it is strictly monogeneous and monogeneous).
(iii) $p \in\left\{b_{1, \text { working: } 1}, \ldots, b_{1, \text { working: } m_{1}}, \ldots, b_{b, \text { working: } 1}, \ldots, b_{b, \text { working:m }}^{b}\right.$ $\}$:

The only value that is appended to place p is W. Therefore Γp is structurally monogeneous (which implies that it is strictly monogeneous and monogeneous).

So Γ since the $\operatorname{PFF}-\mathrm{RDFD}$ is monogeneous (structurally monogeneous Γ strictly monogeneous Γ respec-
 tively) Tthe FIFO Petri Net is monogeneous (structurally monogeneousTstrictly monogeneous Cr (spec tively) 「too.

Example (1.3.1.6): The previous Theorem does not hold in general for RDFD's with persistent flows. Consider the RDFD given in Figure 1.2.

Figure 1.2: Example of a Strictly Monogeneous RDFD with Persistent Flow.

The mappings Enabled Γ Consume Γ and Produce are specified as follows:
$\operatorname{Enabled}(A)=\lambda f s$.
$\left(\neg \operatorname{IsEmpty}(\right.$ last $) \wedge \operatorname{Head}\left(f_{s}(\right.$ last $\left.\left.)\right)=0\right)$
$\vee(\neg \operatorname{IsEmpty}($ last $) \wedge \operatorname{Head}(f s($ last $))=1)$
Enabled $(B)=\lambda f s$.

$$
\operatorname{Head}(f s(f))=0 \vee \operatorname{Head}(f s(f))=1
$$

```
\(\operatorname{Consume}(A)=\lambda(f s, r)\).
    \(\{\) if \((\neg I s E m p t y(l a s t) \wedge \operatorname{Head}(f s(\) last \())=0)\)
    then In \((\) last,\(A)(f s, r)\)
    fi,
    if \((\neg \operatorname{IsEmpty}(\) last \() \wedge \operatorname{Head}(f s(\) last \())=1)\)
    then \(\operatorname{In}(\) last,\(A)(f s, r)\)
    fi
    \}
Consume \((B)=\lambda(f s, r)\).
    \(\{\) if \(\operatorname{Head}(f s(f))=0\)
    then \(\operatorname{In}(f, B)(f s, r)\)
    fi,
    if \(\operatorname{Head}(f s(f))=1\)
    then \(\operatorname{In}(f, B)(f s, r)\)
    fi
    \}
```

$\operatorname{Produce}(A)=\lambda(f s, r)$.
$\{$ if $r(A)($ last $)=0$
then $\operatorname{Out}(1, f, A)(\operatorname{Out}(1$, last, $A)(f s, r))$
fi,
if $r(A)($ last $)=1$
then $\operatorname{Out}(0, f, A)(\operatorname{Out}(0$, last, $A)(f s, r))$
fi
\}
$\operatorname{Produce}(B)=\lambda(f s, r) \cdot\left\{\left(f s,\left[b_{i} \mapsto \lambda f . \perp\right] r\right)\right\}$

Initially Γ and last contain a 0 . Obviously $\tilde{I}_{\text {last }}=\tilde{I}_{f}=\operatorname{LeftFactor}\left((01)^{*}\right) \Gamma$ i. e. Γ flows last and f are strictly monogeneous. Overall Cth RDFD is strictly monogeneous. The equivalent FIFO Petri Net constructed according to [SB96a] is given in Figure 1.3. Since $L_{I}\left(F P N, M_{0}\right.$, last $)=$ LeftFactor $\left((01)^{*}\right) \Gamma$ place last is strictly monogeneous Γ but since $L_{I}\left(F P N, M_{0}, f\right)=\operatorname{LeftFactor}\left(\left(0^{+} 1^{+}\right)^{*}\right) \Gamma$ place f is not strictly monogeneous (it is not even monogeneous).

Figure 1.3: FIFO Petri Net Equivalent to a Monogeneous RDFD with Persistent Flow.

Corollary (1.3.1.7): The following problems are decidable for Monogeneous (Structurally MonogeneousTStrictly MonogeneousTrespectively) PFF-RDFD's: TDP厂PDPГBPTRPTQLPTLPTand RegP. The center of a Monogeneous (Structurally Monogeneous Γ Strictly MonogeneousTrespectively) PFFRDFD is effectively realizableГi. e. Γ the CP is decidable.

Proof: All problems are decidable with respect to Monogeneous (Structurally Monogeneous CStrictly Monogeneous Γ respectively) FIFO Petri Nets ([Fin86]T[FR88]). We have shown that there exists an isomorphism h between Monogeneous (Structurally MonogeneousTStrictly MonogeneousTrespectively) PFF-RDFD's and Monogeneous (Structurally MonogeneousTStrictly MonogeneousTrespectively) FIFO Petri Nets.

- According to the note following Theorem (1.2.2.5) Γ preserves TDP厂 PDPГ BPT RPГ and LP ([KM82]).
- QLP is decidable since LP is decidable with $\gamma=\gamma_{\text {initial }}$.
- CP is decidable for Monogeneous (Structurally MonogeneousTStrictly MonogeneousTrespectively) FIFO Petri Nets ([FR88]).

Since ρ is bijective $\Gamma x \in C\left(P F F-R D F D, \gamma_{\text {initial }}\right) \Leftrightarrow \rho(x) \in C\left(F P N, M_{0}\right)$ where $M_{0}=\rho\left(\gamma_{\text {initial }}\right)$.

- RegP is decidable for Monogeneous (Structurally Monogeneous Γ Strictly Monogeneous Γ respectively) FIFO Petri Nets ([FR88]).

Since τ is bijective $\Gamma F S\left(P F F-R D F D, \gamma_{\text {initial }}\right)$ is regular $\Leftrightarrow \tau\left(F S\left(F P N, M_{0}\right)\right)$ is regular where $M_{0}=\rho\left(\gamma_{\text {initial }}\right)$.

Without giving a definition of a Petri Net (see [Pet81]Tfor example) Twe state the next corollary:

Corollary (1.3.1.8): Every Monogeneous (Structurally Monogeneous Γ Strictly Monogeneous Γ respectively) PFF-RDFD can be simulated by a deterministic Petri Net.

Proof: In [Sta83] and [Fin84] it is shown that every Structurally Monogeneous FIFO Petri Net can be simulated by a labelled Petri Net. ${ }^{2}$ In [FR88] it is shown that every Monogeneous FIFO Petri Net can be simulated by a deterministic Petri Net. Therefore Γ we can simulate any given Monongeneous PFF-RDFD by a Monogeneous FIFO Petri Net which is then simulated by a Petri Net.

The key point in this series of simulations is that every solvable decidability problem for Petri Nets remains decidable for Monogeneous FIFO Petri Nets ([Fin84]) and for Monogeneous PFF-RDFD's. Solution techniques such as the reachability tree and matrix equation approaches can be used to determine other properties such as safeness Γ boundedness Γ conservation Γ and coverability for Petri Nets ([Pet81]). Therefore Γ we immediately have solution techniques to answer related questions for Monogeneous PFF-RDFD's.

1.3.2 Linear RDFD's

Our definitions of Linear RDFD's are related to the definitions of Linear FIFO Petri Nets as given in [FR88] Tsummarized in Subsection 1.2.5.

Definition (1.3.2.1): Let $f \in F$ be a flow of an FDFD. f is called linear if its input language is bounded.

Definition (1.3.2.2): An RDFD is called a Linear RDFD (L-RDFD) ifTand only ifTeach of its flows is linear and has as its initial flow state an element of a_{1}^{*} Twhere $a_{1} \in O B J E C T S$.

[^1]Definition (1.3.2.3): Let $\gamma_{0} \in \Gamma$ be the initial state of an L-RDFD. Let $S \Gamma$ be a set of states over $\Gamma=($ BubbleMode \times Read \times FlowState $)$. S Γ is called a Structured Set of Terminal States (SSTS) with respect to $\left(L-R D F D, \gamma_{0}\right)$ ifTand only if:
(i) membership in $S \Gamma$ is decidable Γ
(ii) $\gamma_{0} \in S \Gamma \Gamma$
(iii) $\forall x, y \in(B \times\{C, P\} \times I N)^{*}:\left(\gamma_{0}[x, y] \gamma \wedge \gamma_{0}[x] \gamma^{\prime} \wedge \gamma \in S \Gamma\right) \Rightarrow \gamma^{\prime} \in S \Gamma$ (i. e. Teach state reached on a path into $S \Gamma$ must be in $S \Gamma$) Γ and
(iv) $\forall x \in(B \times\{C, P\} \times N)^{*}:\left(\gamma \in S \Gamma \wedge \gamma\left[x^{i}\right] \gamma_{i}, i \geq 1 \wedge \gamma \leq \gamma_{1} \wedge \gamma_{1} \in S \Gamma\right) \Rightarrow \forall i \geq 1: \gamma_{i} \in S \Gamma$ (i. e. Γ any sequence of transitions which when applied to a state in $S \Gamma$ terminates at another state in $S \Gamma$ and can be repeated indefinitely without leaving $S \Gamma$).

Definition (1.3.2.4): Let $\gamma_{1}=\left(b m_{1}, r_{1}, f s_{1}\right), \gamma_{2}=\left(b m_{2}, r_{2}, f s_{2}\right) \in \Gamma$ be states of an FDFD. We say that $\gamma_{1} \leq \gamma_{2}$ ifTand only ifTthe following three conditions hold:

- $\forall b \in B: b m_{1}(b)=b m_{2}(b)$
- $\forall b \in B \forall f \in F: r_{1}(b)(f)=r_{2}(b)(f)$
- $\forall f \in F: f s_{1}(f) \leq f s_{2}(f) \Gamma$ i. e. $\Gamma f s_{1}(f)$ is a left factor of $f s_{2}(f)$.

Definition (1.3.2.5): Let $\gamma_{0} \in \Gamma$ be the initial state of an L-RDFD. Let $S \Gamma$ be a set of states over $\Gamma=($ BubbleMode \times Read \times FlowState $)$. $\left(L-R D F D, \gamma_{0}, S \Gamma\right)$ is called a Linear RDFD having a Structured Set of Terminal States (SSTS-L-RDFD). The set of firing sequences of (L-RDFD, $\gamma_{0}, S \Gamma$) is $F S\left(L-R D F D, \gamma_{0}, S \Gamma\right)=\left\{s \mid s \in(B \times\{C, P\} \times I N)^{*} \wedge \gamma_{0}[s] \gamma \wedge \gamma \in S \Gamma\right\}$.

Theorem (1.3.2.6): Every (SSTS-)L-RDFD (with a Structured Set of Terminal States $S \Gamma$) with initial state $\gamma_{\text {initial }}$ can be simulated by a Linear FIFO Petri Net (with a Structured Set of Terminal Markings $\rho(S \Gamma)$) with respect to an isomorphism h.

Proof: Similar to the proof of Theorem (1.3.1.5) Twe distinguish among four different types of places in $P_{F P N}$:
(i) $p \in\left\{f_{1}, \ldots, f_{f}\right\} \wedge$ Consumable (p) :

Since $M_{F P N}(p)=f s(p)$ by definitionTthe contents of each place of the FIFO Petri Net is identical
to the contents of the corresponding flow of the $\mathrm{L}-\mathrm{RDFD}$. Also Γ a new value is appended to place p ifTand only ifTthe related value is appended to the corresponding flow. Hence Γ since flow p is linearTplace p is linearГtoo.
(ii) $p \in\left\{f_{1}, \ldots, f_{f}\right\} \wedge \neg \operatorname{Consumable}(p)$:

Since $M_{F P N}(p)=f s(p)$ by definitionTthe contents of each place of the FIFO Petri Net is identical to the contents of the corresponding flow of the L-RDFD. A new value is appended to place p ifT and only ifTone of two possible cases occurs:
(a) The related value is appended to the corresponding flow. ThenTsince flow p is linear Γ place p is linear Γ too.
(b) A value is read from the corresponding persistent flow (but it is not removed from this flow). This relates to removing the head element and appending the new value (which is the same as the value which has been removed) to this place upon firing of a transition of the FIFO Petri Net. Since our mapping from RDFD's to FIFO Petri Nets guarantees that places representing persistent flows contain exactly one token at a timeTthis new value appended to place p is automatically the head element of this place. Therefore Tif in the L-RDFD the word $\ldots a_{i}^{n_{i}} \ldots$ occurs as input to flow p Гthe word $\ldots a_{i}^{n_{i 1}} a_{i} a_{i}^{n_{i 2}} \ldots$. . where $n_{i 1} \geq 1, n_{i}=n_{i 1}+n_{i 2} \Gamma$ will occur as input to place p in the FIFO Petri Net. Hence T place p is linear.
(iii) $p \in\left\{b_{1, i d l e}, \ldots, b_{b, i d l e}\right\}$:

The only value that is appended to place p is I. The input language of p is I^{*} with initial marking I. Therefore Γp is linear.
(iv) $p \in\left\{b_{1, \text { working: } 1}, \ldots, b_{1, \text { working: } m_{1}}, \ldots, b_{b, \text { working: } 1}, \ldots, b_{b, \text { working:m }}^{b}\right.$ $\}$:

The only value that is appended to place p is W. The input language of p is W^{*} with initial marking $\langle>$. Therefore Γp is linear.

Solsince the L-RDFD is linearTi. e. Teach of its flows is linearCthe FIFO Petri Net is linearCtoo. Now Twe still have to show that $\rho(S \Gamma)$ is a Structured Set of Terminal Markings with respect to ($F P N, \rho\left(\gamma_{\text {initial }}\right)$). Since ρ is bijective $\Gamma \gamma \in S \Gamma \Leftrightarrow \rho(\gamma) \in \rho(S \Gamma)$. Since τ is bijective $\Gamma s \in F S\left(L-R D F D, \gamma_{\text {initial }}, S \Gamma\right) \Leftrightarrow$ $\tau(s) \in F S\left(F P N, \rho\left(\gamma_{\text {initial }}\right), \rho(S \Gamma)\right)$. Therefore $\Gamma \rho(S \Gamma)$ is a SSTM of the FIFO Petri Net since $S \Gamma$ is a SSTS of the L-RDFD.

Formally Γ we can incorporate the notation of a Structured Set of Terminal States $S \Gamma$ into the transitions rules (see [LWBL96] [[SB96a]) that are allowed between configurations of FDFD's. The modified transition rules now read as follows:

$$
\begin{gathered}
b m(b)=\text { idle, } \\
\text { Enabled }(b)(f s)=\text { true, } \\
b m^{\prime}=[b \mapsto \text { working }] b m, \\
\left(f s^{\prime}, r^{\prime}\right) \in \operatorname{Consume}(b)(f s, r) \\
\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right) \in S \Gamma \\
(b m, r, f s) \Leftrightarrow\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
b m(b)=\text { working } \\
b m^{\prime}=[b \mapsto \text { idle }] b m, \\
\left(f s^{\prime}, r^{\prime}\right) \in \operatorname{Produce}(b)(f s, r) \\
\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right) \in S \Gamma \\
\hline(b m, r, f s) \Leftrightarrow\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right)
\end{gathered}
$$

Of course Γ it must be decidable whether $\left(b m^{\prime}, r^{\prime}, f s^{\prime}\right) \in S \Gamma$ holds.
There are two obvious advantages of having a SSTS for FDFD's (and not only for L-RDFD's):

- A computerized evaluation of a given FDFDTfor example by using the software described in [Wah95] Tmay be restricted to those states that are of particular interest to the system analyst.
- The introduction of an SSTS is an additional approach to modify the qualitative behavior of an FDFD. For example consider an FDFD where a communication protocol with erraneous channels has been modeled. Assume we also have been able to identify a set of error states Γ $E S$. ThenTif we want to analyze a similar communication protocol where no erraneous channels occur Γ we do not have to modify the FDFD itselfT but just have to introduce the SSTS $S \Gamma=$ $R S\left(F D F D, \gamma_{\text {initial }}\right) \Leftrightarrow E S \Gamma$ such that it is impossible for the system to enter any of the error states.

Corollary (1.3.2.7): The following problems are decidable for (SSTS-)L-RDFD's: TDPГPDP厂 BPTRPTand QLP.

Proof: All problems are decidable with respect to (SSTM-)LFPN's ([FR88]). We have shown that there exists an isomorphism h between (SSTS-)L-RDFD's and SSTM-LFPN's.

- According to the note following Theorem (1.2.2.5) Ch preserves TDPГРDPГВРГand RP ([KM82]).
- QLP is decidable for (SSTM-)LFPN's ([FR88]).

Since τ and ρ are bijective $\Gamma \forall(b, a, j) \in\left(B_{R D F D} \times\{C, P\} \times I N\right) \exists s \in\left(B_{R D F D} \times\{C, P\} \times I N\right)^{*}$: $\gamma_{\text {initial }}[s,(b, a, j)]$ holds $\Leftrightarrow \forall t \in T_{F P N} \quad \exists \tilde{x} \in T_{F P N}^{*}: M_{0}\left(\tilde{x} t>\right.$ holds Γ where $M_{0}=\rho\left(\gamma_{\text {initial }}\right) \Gamma$ $t=\tau((b, a, j)) \Gamma$ and $\tilde{x}=\tau(s)$.

1.3.3 Topologically Free Choice RDFD's

Our definitions of Topologically Free Choice RDFD's are related to the definitions of Topologically Free Choice FIFO Petri Nets as given in [FC88]Tsummarized in Subsection 1.2.5.

Definition (1.3.3.1): Let $f \in F$ be a flow of an FDFD.
The output alphabet $A O_{f}$ of a flow f is defined as

$$
A O_{f}=\left\{o \mid \exists b \in B \exists j \in \mathbb{N}:(\operatorname{Consume}(b))_{j}=\ldots \operatorname{Head}(f s(f))=o \ldots\right\}
$$

The input alphabet $A I_{f}$ of a flow f is defined as

$$
A I_{f}=\left\{i \mid \exists b \in B \exists j \in N:(\operatorname{Produce}(b))_{j}=\ldots \operatorname{Out}(i, f, b) \ldots\right\}
$$

The alphabet A_{f} of a flow f is defined as $A_{f}=A O_{f} \cup A I_{f}$.

The output alphabet $A O_{f}$ is a subset of $O B J E C T S$ that might be read from a flow f in accordance with the mapping Consume. The input alphabet $A I_{f}$ is a subset of $O B J E C T S$ that might be written to a flow f in accordance with the mapping Produce. These definitions are only related to the static structure of the FDFD. It is not necessarily required that all $O B J E C T S a \in A_{f}$ will actually appear on this flow for any firing sequence or any initial state $\gamma_{\text {initial }}$.

Definition (1.3.3.2): The set of flows F of an FDFD with initial state $\gamma_{\text {initial }}=\left(b m_{\text {initial }}, r_{\text {initial }}\right.$, $\left.f s_{\text {initial }}\right)$ is called normalized Γ if the following two conditions are satisfied:

- each flow $f \in F$ is balancedTi. e. $\Gamma A I_{f}=A O_{f}=A_{f}$ (the input alphabet is equal to the output alphabet) Γ
- $\forall f \in F: f s_{i n i t i a l}(f) \in A_{f}^{*}$.

The definition of a normalized FIFO Petri Net requires that each place $p \in P$ is semi-alphabetic Γ i. e. Tat most one element of the alphabet A is consumed from p in each step. However Γ this is already part of our definition of RDFD's which states that for a bubble $b \in B \Gamma$ the mappings Enabled (b) and Consume (b) only make use of the head element of a flow $f \in \operatorname{Inputs}(b)$. Hence Γ each flow is semialphabetic in an RDFD. Actually 1 it is even alphabetic since a similiar restriction prevents Produce (b) to write more than one element at a time to a flow $f \in$ Outputs (b).

In particularTthe restriction to a set of normalized flows is no restriction of the power of RDFD's but guarantees Γ a priori Γ that there will never be an object $o \in O B J E C T S$ which can not even potentially be removed from a flow $f \in F$ Гin at least one Consume (b) case. Of course Γ it must hold that all other flows in this Consume (b) case have the appropriate head element before this object actually can be removed.

In analogy to Hack's definition for free choice Petri Nets we extend this definition for RDFD's:

Definition (1.3.3.3): Let $f \in F$ be a flow of an FDFD and $b \in B$ the bubble where $f \in \operatorname{Inputs}(b)$. f is called free choice (it satisfies the Hack condition) ifT and only ifT it fulfills one of two possible conditions:

- A statement of the form "...Head $(f s(f)) \ldots$. . occurs only in one single case in Enabled /Consume of bubble b Гor
- for all cases in Enabled / Consume of bubble b that contain ". . Head $(f s(f)) \ldots$. Γf is the only flow that is used for this case (throughout the statement we have " $\neg \operatorname{IsEmpty}(f s(f)) \wedge \operatorname{Head}(f s(f))=i$ " for some i 's).

The main idea of this definition is to allow only controlled conflict. In general conflict occurs when several cases in bubble $b \in B$ could potentially read from the same flow $f \in F$. By the definition of free choice RDFD'sTif a flow f occurs in several cases in Enabled / Consume of bubble b (potential conflict) Γ then it is the only flow accessed in any of these cases. Therefore Γ all of the conflicting cases that require "Head $(f s(f))=i$ " are simultaneously activated Γ or none of them is activated since the flow is empty. This allows the choice (conflict resolution) to be made freely which case is to be selected. It does not depend on the presence of other $O B J E C T S$ on other flows.

Definition (1.3.3.4): An RDFD is called an Extended Topologically Free Choice RDFD (ETFCRDFD) $i f$ Tand only ifTthe following two conditions are satisfied:

- the set of flows F is normalizedTand
- $\forall f \in F:\left|A_{f}\right|>1 \Rightarrow f$ is free choice (it satisfies the Hack condition).

Since the set of flows is normalizedTthere exists for each flow $f \in F$ of an FDFD and $b \in B$ the bubble where $f \in \operatorname{Inputs}(b)$ at least one case in Enabled/Consume that can make use of the head element of f Thus potentially go from idle to working provided f and $\overline{\text { tif }} f$ occurs only in a single case Γ all other flows that occur in this case Tare not empty.

UnfortunatelyTour construction of FIFO Petri Nets based on a given EFCT-RDFD fails to provide an EFCT-FIFO Petri Net. The problem is structurally inherited from the definition of the isomorphism h. For each bubble in the RDFDTwe introduce additional places in the FIFO Petri Net to store the bubble's working mode and the values that have been read ([SB96a]). The place of the FIFO Petri Net that represents the idle working mode of the RDFD causes the problem since it typically is not the only input to serveral transitions of the FIFO Petri Net. Consider the following example:

Example (1.3.3.5): A simple FDFD with only two bubbles A and B connected by a flow f.

Figure 1.4: EFCT-RDFD.

The mappings Enabled Γ Consume Γ and Produce for the FDFD shown in Figure 1.4 are specified as follows:

$$
\begin{aligned}
& \text { Enabled }(A)=\lambda f s . \text { true } \\
& \text { Enabled }(B)=\lambda f s . \\
& \qquad(\neg \operatorname{IsEmpty}(f) \wedge \operatorname{Head}(f s(f))=0) \\
& \quad \vee(\neg \operatorname{IsEmpty}(f) \wedge \operatorname{Head}(f s(f))=1)
\end{aligned}
$$

$\operatorname{Consume}(A)=\lambda(f s, r) \cdot\{(f s, r)\}$
Consume $(B)=\lambda(f s, r)$.
$\{\mathbf{i f}(\neg \operatorname{IsEmpty}(f) \wedge \operatorname{Head}(f s(f))=0)$
then $\operatorname{In}(f, B)(f s, r)$
fi,
if $(\neg \operatorname{IsEmpty}(f) \wedge \operatorname{Head}(f s(f))=1)$
then $\operatorname{In}(f, B)(f s, r)$
fi
\}
$\operatorname{Produce}(A)=\lambda(f s, r)$.
$\{\operatorname{Out}(0, f, A)(f s, r)$,
$\operatorname{Out}(1, f, A)(f s, r)\}$
$\operatorname{Produce}(B)=\lambda(f s, r) \cdot\{(f s,[B \mapsto \lambda f . \perp] r)\}$
Initially $\mathrm{fflow} f$ is empty. According to [SB96a] Γ the given RDFD transforms into the following marked FIFO Petri Net $F P N=\left(\left(P_{F P N}, T_{F P N}, B_{F P N}, F_{F P N}, Q_{F P N}\right), M_{0, F P N}\right)$:

$$
\begin{aligned}
& P_{F P N}=\{f\} \cup\left\{A_{i}, A_{w: 1}, B_{i}, B_{w: 1}, B_{w: 2}\right\} \\
& T_{F P N}=\left\{C_{A 1}, C_{B 1}, C_{B 2}\right\} \cup\left\{P_{A 1}, P_{A 2}, P_{B 1}, P_{B 2}\right\}
\end{aligned}
$$

The initial marking $M_{0, F P N}$ is such that:

$$
\begin{aligned}
& M_{0, F P N}\left(A_{i}\right)=M_{0, F P N}\left(B_{i}\right)=I \\
& M_{0, F P N}\left(A_{w: 1}\right)=M_{0, F P N}\left(B_{w: 1}\right)=M_{0, F P N}\left(B_{w: 2}\right)=<> \\
& M_{0, F P N}(f)=<>
\end{aligned}
$$

$B_{F P N} \Gamma F_{F P N} \Gamma$ and $Q_{F P N}$ can be gained from Figure 1.5.

Figure 1.5: FIFO Petri Net.

The resulting FIFO Petri Net is normalized．We have：

$$
\begin{aligned}
& A_{f}=\{0,1\} \\
& A_{A_{i}}=A_{B_{i}}=\{I\} \\
& A_{A_{w: 1}}=A_{B_{w: 1}}=A_{B_{w: 2}}=\{W\}
\end{aligned}
$$

Each place is semi－alphabetic and the condition for the initial marking $M_{0, F P N}$ is fulfilled．Since $\left|A_{f}\right|=2 \Gamma$ we have to verify that f satisfies the Hack condition．Unfortunately「it does not．We have $\Gamma(f)=\left\{C_{B_{1}}, C_{B_{2}}\right\}$ and $|\Gamma(f)|=2>1 \Gamma$ but $\Gamma^{-1}\left(C_{B_{1}}\right)=\Gamma^{-1}\left(C_{B_{2}}\right)=\left\{f, B_{i}\right\} \neq\{f\}$.

1．4 Summary

The basic idea of this article was not to define completely new subclasses of RDFD＇sTbut to extend known subclasses of FIFO Petri Nets towards RDFD＇s．Once definedTwe have seen that Monogeneous PFF－RDFD＇s and Linear RDFD＇s are related to Monogeneous FIFO Petri Nets and Linear FIFO Petri NetsTrespectively「through isomorphisms．These isomorphisms maintain solutions of decidability problems Γ thus allowing us to answer problems such as TDP厂 PDP厂 BP厂 RPT QLP厂 LPT RegPT and CP for Monogeneous PFF－RDFD＇s and problems such as TDPГ PDPГВP厂RPT and QLP for Linear RDFD＇sTbased on methods and algorithms already available for FIFO Petri Nets．Unfortunately「our mapping from RDFD＇s to FIFO Petri Nets fails for ETFC－RDFD＇s．We are working on a different homomorphism h^{\prime} between ETFC－RDFD＇s and ETFC－FIFO Petri Nets that hopefully will allow us to answer decidability problems for ETFC－RDFD＇s based on their solution for ETFC－FIFO Petri Nets．

Future work is expected to move in the following directions：It is desirable to identify further subclasses of RDFD＇s that allow the solution of（some）decidability questions．These new subclasses of RDFD＇s will also relate to additional subclasses of FIFO Petri Nets．Therefore Γ it would be reasonable to join research efforts on FDFD＇s and on FIFO Petri Nets．

So farTthere remain several open decidability problems for subclasses of RDFD＇sTsince the related problem is open for the corresponding subclass of FIFO Petri Nets．It is conjectured（［FR88］）that most of these problems are decidable even though no proof or algorithm exists at this time．Further work has to be done to identify which problem is（or is not）decidable for which subclass of RDFD＇s／FIFO Petri Nets．Another interesting approach would be the extension of a method well－known for Petri Nets－the reduction of the number of places of the Petri Net（e．g．$\Gamma[B R 76]$ ）— towards subclasses of RDFD＇s／FIFO Petri Nets with the intent to solve decidability questions more efficiently．

FinallyT we must admit that there was no effort made so far that deals with the complexity and efficiency of the decidability algorithms．Even though many problems have been identified as decidable
for particular subclasses of RDFD's R no efficient algorithm has yet been given. It is desireable to determine (lower and upper) bounds for (time and space) complexity of possible algorithms and evaluate given current (and future) algorithms with respect to these bounds.

Acknowledgements

Symanzik's research was partially supported by a German "DAAD-Doktorandenstipendium aus Mitteln des zweiten Hochschulsonderprogramms".

Bibliography

[BR76] G. Berthelot and G. Roucairol. Reduction of Petri-Nets. In A. MazurkiewiczT editorT Lecture Notes in Computer Science Vol. 45: Mathematical Foundations of Computer Science 1976: Proceedings, 5th Symposium, Gdańsk, September 1976Tpages 202-207TSpringerVerlagГBerlinTHeidelbergT1976.
[CF87] A. Choquet and A. Finkel. Simulation of Linear FIFO Nets by a new Class of Petri Nets. Universite de Paris-SudTCentre d'OrsayГLaboratoire de Recherche en InformatiqueГBat. 490Г91405 Orsay (France) ГRapport de Recherche No. 324ГJan 1987.
[Fan92] J. Fanchon. A FIFO-Net Model for Processes with Asynchronous Communication. In G. RozenbergTeditor Γ Lecture Notes in Computer Science Vol. 609: Advances in Petri Nets

[FC88] A. Finkel and A. Choquet. FIFO Nets Without Order Deadlock. Acta InformaticaГ25(1):1536Г1988.
[Fin84] A. Finkel. Petri Nets and Monogeneous FIFO Nets. Bulletin of the European Association of Theoretical Computer ScienceГ23:28-31Г1984.
[Fin86] A. Finkel. Structuration des Systemes de Transitions - Applications au Controle du Parallelisme par Files FIFO. These ScienceГUniversite de Paris-SudГCentre d'OrsayГ1986.
[FM82] A. Finkel and G. Memmi. FIFO Nets: A New Model of Parallel Computation. In A.B. Cremers and H.P. KriegelTeditorsT Lecture Notes in Computer Science Vol. 145: Theoretical Computer Science: 6th GI-Conference, Dortmund, January 1983Tpages 111-121「SpringerVerlagГBerlinTHeidelberg 51982.
[FR85] M.P. Flé and G. Roucairol. Fair Serializability of Iterated Transactions Using FIFO-Nets. In G. RozenbergTeditorT Lecture Notes in Computer Science Vol. 188: Advances in Petri Nets 1984 Tpages 154-168TSpringer-VerlagГBerlinTHeidelbergT1985.
［FR88］A．Finkel and L．Rosier．A Survey on the Decidability Questions for Classes of FIFO Nets． In G．RozenbergTeditorT Lecture Notes in Computer Science Vol．340：Advances in Petri Nets 1988Гpages 106－132TSpringer－VerlagTBerlinTHeidelbergГ1988．
［KM82］T．Kasai and R．E．Miller．Homomorphisms between Models of Parallel Computation．Jour－ nal of Computer and System SciencesГ25：285－331Г1982．
［LWBL96］G．T．Leavens T T．Wahls A．L．BakerT and K．Lyle．An Operational Semantics of Firing Rules for Structured Analysis Style Data Flow Diagrams．Technical Report 93－28d「Iowa State UniversityTDepartment of Computer ScienceГ 226 Atanasoff HallГAmes TIowa 50011「 December 1993TrevisedГ July 1996．Available by anonymous ftp from ftp．cs．iastate．edu or by e－mail from almanac＠cs．iastate．edu．
［MF85］G．Memmi and A．Finkel．An Introduction to FIFO Nets－Monogeneous Nets：A Subclass of FIFO Nets．Theoretical Computer ScienceГ 35（2－3）：191－214Г1985．
［MM81］R．Martin and G．Memmi．Specification and Validation of Sequential Processes Commu－ nicating by FIFO Channels．I．E．E．Conference Publication No．198：Fourth International Conference on Software Engineering for Telecommunication Switching Systems，Warwick， July 1981Г pages 54－57Г1981．
［Pet81］J．L．Peterson．Petri Net Theory and the Modeling of Systems．Prentice－HallInc．TEnglewood Cliffs「New Jersey「1981．
［Rou87］G．Roucairol．FIFO－Nets．In W．BrauerT W．ReisigT and G．RozenbergTeditors Lecture Notes in Computer Science Vol．254：Petri Nets：Central Models and Their Properties， Advances in Petri Nets 1986，Part I，Proceedings of an Advanced Course，Bad Honnef， September 1986Гpages 436－459ГSpringer－VerlagTBerlinTHeidelbergT1987．
［SB96a］J．Symanzik and A．L．Baker．Formalized Data Flow Diagrams and Their Relation to Other Computational Models．Technical Report 96－20Г Iowa State University D Department of Computer Science 226 Atanasoff Hall $\overline{\text { Ames }}$ I Iowa 50011Γ December 1996．Available by anonymous ftp from ftp．cs．iastate．edu or by e－mail from almanac＠cs．iastate．edu．
［SB96b］J．Symanzik and A．L．Baker．Non－Atomic Components of Data Flow Diagrams：StoresT Persistent FlowsT and Tests for Empty Flows．Technical Report 96－21TIowa State Uni－ versity Department of Computer ScienceГ 226 Atanasoff Hall $\overline{\text { Ames }}$ I Iowa 50011Г De－
cember 1996. Available by anonymous ftp from ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.
[Sta83] P.H. Starke. Monogenous FIFO-Nets and Petri-Nets are Equivalent. Bulletin of the European Association of Theoretical Computer ScienceГ21:68-77Г1983.
[Wah95] T. Wahls. On the Execution of High Level Formal Specifications. PhD Thesis Iowa State UniversityГAmesГIowaГ50011Г1995.

[^0]: ${ }^{1}(D, \geq)$ can be any partial ordering on the set D.

[^1]: ${ }^{2}$ Note that in these two references the term monogeneous is used instead of the term structurally monogeneous which is used within this paper.

