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1 SUBCLASSES OF FORMALIZED DATA FLOW DIAGRAMS:

MONOGENEOUS, LINEAR, AND TOPOLOGICALLY FREE CHOICE

RDFD'S

Abstract

Formalized Data Flow Diagrams (FDFD's) and, especially, Reduced Data Flow Diagrams (RDFD's)

are Turing equivalent ([SB96a]). Therefore, no decidability problem can be solved for FDFD's in general.

However, it is possible to de�ne subclasses of FDFD's for which decidability problems can be answered.

In this paper we will de�ne certain subclasses of FDFD's, which we call Monogeneous RDFD's, Linear

RDFD's, and Topologically Free Choice RDFD's. We will show that two of these three subclasses of

FDFD's can be simulated via isomorphism by the correspondingly named subclasses of FIFO Petri

Nets. It is known that isomorphisms between computation systems guarantee the same answers to

corresponding decidability problems (e. g., reachability, deadlock, liveness) in the two systems ([KM82]).

This means that problems where it is known that they can (not) be solved for a subclass of FIFO Petri

Nets it follows immediately that the same problems can (not) be solved for the correspondingly named

subclass of FDFD's.
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1.1 Introduction

Formalized Data Flow Diagrams (FDFD's) as given in [LWBL96] are a relatively new approach to the

formalizationof traditional Data FlowDiagrams (DFD's). Recently it has been formally established that

FDFD's are Turing equivalent ([SB96a]) and their non{atomic components, e. g., stores and persistent


ows, are not essential to the expressive power of FDFD's ([SB96b]). Unfortunately, this equivalence to

Turing Machines prevents the analytical solution of decidability problems (e. g., reachability, deadlock,

liveness) for FDFD's.

However, there exist subclasses of another computational model with the computational power of

Turing Machines, FIFO Petri Nets (introduced in [MM81]), for which decidability problems can be

solved. Many variations and restrictions of the basic model of FIFO Petri Nets have been considered,

e. g., in [FM82], [Sta83], [Fin84], [FR85], [MF85], [Fin86], [Rou87], [CF87], [FC88], [FR88], and [Fan92].

Probably the most important work done with respect to this current paper was the survey on decidability

questions for subclasses of FIFO Petri Nets in [FR88]. There, it was established which decidability

problems can be solved for which subclasses of FIFO Petri Nets typically considered in the literature,

that is, Monogeneous FIFO Petri Nets, Linear FIFO Petri Nets, and Topologically Free Choice FIFO

Petri Nets.

In this paper, we �rst summarize required de�nitions and main results for computation systems,

FIFO Petri Nets, and decidability problems in Section 1.2. In Section 1.3, we de�ne subclasses of Re-

duced Data Flow Diagrams (RDFD's), i. e., Monogeneous RDFD's, Linear RDFD's, and Topologically

Free Choice RDFD's. From [SB96a] we know that every RDFD can be simulated by a FIFO Petri Net

with respect to an isomorphism h. We will show that this isomorphism h actually maps Monogeneous

persistent 
ow{free RDFD's and Linear RDFD's onto subclasses of FIFO Petri Nets of the same names.

Moreover, from [KM82] we know that isomorphisms preserve many decidability problems. Therefore,

we can conclude that a problem that is decidable for a subclass of FIFO Petri Nets is also decidable for

the related subclass of FDFD's. Unfortunately, our isomorphism h does not map (Extended) Topolog-

ically Free Choice RDFD's to (Extended) Topologically Free Choice FIFO Petri Nets. We �nish this

paper with a summary on possible future research in Section 1.4.
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1.2 De�nitions

In the next two subsections, we summarize de�nitions and results from [KM82]. Please refer to this

work for a more detailed explanation of symbols and for additional de�nitions. A short summary of

[KM82] is given in [SB96a]. We assume that the reader is familiar with [SB96a] since our notations,

de�nitions, and proofs of theorems are closely related to this reference. In Subsections 1.2.3 and 1.2.4,

we summarize de�nitions for FIFO Petri Nets and related decidability problems. In Subsection 1.2.5,

we deal with subclasses of FIFO Petri Nets.

1.2.1 Computation Systems

De�nition (1.2.1.1): A computation system S = (�; D; x; ) consists of a set D, an element x

of D, a �nite set � of operations, and a function \ " from � to the set of partial functions from D to

D. That is, for each a 2 �, a is a partial function from D to D. The function \ " is extended to ��

by � = identity; ��(y) = � � �(y) = �(�(y)); � � � 2 ��; y 2 D.

1.2.2 Decidability Problems for Computation Systems

De�nition (1.2.2.1): For a given computation system S = (�; D; x; ), we are interested in

answers to the following decidability problems:

(i) Reachability: For y 2 D, is y 2 RS?

(ii) Deadlock: Does there exist an � 2 CS such that, for every a 2 �, �a 62 CS?

(iii) Termination: Is CS �nite?

(iv) Finiteness: Is RS �nite?

(v) Equivalence of sets of computation sequences: For y; z 2 D, is CS(y) = CS(z)?

(vi) Liveness: For any � 2 CS and a 2 �, does there exist a � 2 �� such that ��a 2 CS?

(vii) Exceedability: With D a partially ordered set1 and given y 2 D, does there exist a z 2 RS such

that z � y?

In this de�nition, RS denotes the reachability set from x, CS the set of all �nite computation se-

quences from x, and CS(y) the set of all �nite computation sequences from y.

1(D;�) can be any partial ordering on the set D.
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De�nition (1.2.2.2): Let S1 = (�1; D1; x1;
1
) and S2 = (�2; D2; x2;

2
) be computation

systems. A homomorphism h = (�; �) : S1 ! S2 consists of a homomorphism � : ��
1 ! ��

2, and an

injection � : D1 ! D2 which satis�es the following conditions:

�(x1) = x2 ( 1.2.2.2.1)

8 y; z 2 RS1
8� 2 ��

1 : (y
�
�! z ) �(y)

�(�)
�! �(z)) ( 1.2.2.2.2)

De�nition (1.2.2.3): Let h = (�; �) : S1 ! S2 be a homomorphism. h is called an isomorphism

if there is a homomorphism h0 = (� 0; �0) : S2 ! S1 such that hh0 : S2 ! S2 and h0h : S1 ! S1 are

identities, i. e., �� 0 : ��
2 ! ��

2, �
0� : ��

1 ! ��
1, ��

0 : D2 ! D2, and �
0� : D1 ! D1 are identities.

De�nition (1.2.2.4): Let H be a class of homomorphisms. Let P be a problem of the form:

Given a computation system S = (�; D; x; ), y1; : : : ; yn 2 D, whether P (S; y1; : : : ; yn)? We say

that P is preserved by H under the following condition: For any S1 and S2, if there is an h 2 H such

that h = (�; �) : S1 ! S2, then P (S1; y1; : : : ; yn) holds if, and only if, P (S2; �(y1); : : : ; �(yn)) holds.

Theorem (1.2.2.5): Particular types of homomorphisms preserve the following decidability

problems:

(i) A spanning homomorphism preserves reachability.

(ii) A spanning homomorphism preserves deadlock.

(iii) A spanning homomorphism preserves the termination property.

(iv) A surjective homomorphism preserves �niteness.

(v) A principal homomorphism preserves equivalence of sets of computation sequences.

(vi) A principal homomorphism preserves liveness.

(vii) An order preserving spanning homomorphism preserves exceedability.

Proof: Proofs are given in [KM82], Section 4.

It should be noted that an isomorphism h is also a bijective (hence injective, surjective, hence span-

ning), length preserving, and principal homomorphism. Thus, an isomorphism h preserves decidability

problems (i) to (vi).
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1.2.3 FIFO Petri Nets

In some sense, FIFO Petri Nets (introduced in [MM81]) are Petri Nets (see [Pet81], for example)

where places contain words instead of tokens and arcs are labelled by words. More formally, we make

use of the de�nition of FIFO Petri Nets as given in [Rou87].

De�nition (1.2.3.1): A FIFO Petri Net is a quintuple FPN = (P; T;B; F;Q) where P is a �nite

set of places (also called queues), T is a �nite set of transitions (disjoint from P ), Q is a �nite queue

alphabet, and F : T �P ! Q� and B : P �T ! Q� are two mappings called respectively forward and

backward incidence mappings.

De�nition (1.2.3.2): A marking M of a FIFO Petri Net is a mappingM : P ! Q�.

A transition t is �reable in M , written M (t >, if 8 p 2 P : B(p; t) � M (p) (where u � x means u is a

pre�x of x).

For a markingM , we de�ne the �ring of a transition t, writtenM (t > M 0, ifM (t > and the following

equation between words holds 8 p 2 P : B(p; t)M 0(p) =M (p)F (t; p). That means, the �ring of a tran-

sition t removes B(p; t) from the head ofM (p) and appends F (t; p) to the end of the resulting word.

De�nition (1.2.3.3): A FIFO Petri Net FPN together with an initial marking M0 : P ! Q�

is called a marked FIFO Petri Net and is denoted by (FPN;M0).

As usual, the �ring of a transition can be extended to the �ring of a sequence of transitions. We

denote by FS(FPN;M0) the set of �ring sequences of this FIFO Petri Net. The �ring of a sequence u

of transitions from a marking M to a marking M 0 is written as M (u > M 0.

The set of markings that are reachable from M0 is called reachability set and it is denoted by

Acc(FPN;M0).

In addition, the following two de�nitions from [FR88] are used within this paper:

De�nition (1.2.3.4): Let R(FPN;M0) denote the set of all markings that are reachable fromM0,

i. e., R(FPN;M0) = fM j 9x 2 T � : M0(x > Mg. Let L(FPN;M0) denote the language of the net or

the set of all sequences in T � that are �reable fromM0, i. e., L(FPN;M0) = fx j x 2 T � ^M0(x >g.

An element x 2 T � is said to be in the center of (FPN;M0), denoted by C(FPN;M0), if, and only if,

M0(x > M and L(FPN;M ) is in�nite.
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However in accordance with many other references, we prefer the abbreviations FS for the set of

�ring sequences (language, set of computation sequences) and RS for the reachability set. Therefore, we

denote by FS(FPN;M0) what is denoted by L(FPN;M0) in [FR88] and we denote by RS(FPN;M0)

what is denoted by R(FPN;M0) in [FR88] and by Acc(FPN;M0) in [Rou87].

De�nition (1.2.3.5): The input language of a place p in (FPN;M0) is de�ned as LI (FPN;M0; p) =

hp(FS(FPN;M0)) with hp(t) = F (t; p).

1.2.4 Decidability Problems for FIFO Petri Nets

The following de�nition is due to [FR88].

De�nition (1.2.4.1): For a given marked FIFO Petri Net (FPN;M0), we de�ne the following

decidability problems:

Total Deadlock Problem (TDP): Is FS(FPN;M0) �nite?

Partial Deadlock Problem (PDP): Is there a �nite path in (FPN;M0) that can not be extended,

i. e., does there exist an x 2 T � such that M0(x > M where no transition in T is �reable from

M?

Boundedness Problem (BP): Is RS(FPN;M0) �nite?

Reachability Problem (RP): For a marking M , is M 2 RS(FPN;M0)?

Quasi{Liveness Problem (QLP): 8 t 2 T , is there an x 2 T � such that M0(xt > ?

Liveness Problem (LP): 8M 2 RS(FPN;M0) 8 t 2 T , is there an x 2 T � such that M (xt > ?

Center Problem (CP): Is there an algorithm that will generate a recursive representation of

C(FPN;M0)?

Regularity Problem (RegP): Is FS(FPN;M0) regular?

Unfortunately, names for decidability problems for computation systems in [KM82] and FIFO Petri

Nets in [FR88] di�er. Other terms can be found within the literature. It should be noted that the

following names for decidabilty problems are identical:
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Computation Sytsem FIFO Petri Net

Reachability RP

Deadlock PDP

Termination TDP

Finiteness BP

Equivalence

Liveness LP

Exceedability

QLP

CP

RegP

1.2.5 Subclasses of FIFO Petri Nets

In this subsection, we summarize de�nitions and theorems related to Monogeneous FIFO Petri Nets

(e. g., [Sta83], [Fin84], [MF85], [Fin86], [Rou87], [FR88]), Linear FIFO Petri Nets (e. g., [CF87], [FR88]),

and and (Extended) Topologically Free Choice FIFO Petri Nets (e. g., [Fin86], [Rou87], [FC88], [FR88]).

Monogeneous FIFO Petri Nets

In this part, we follow the notation in [Fin86] and [FR88].

De�nition (1.2.5.1): Let A be a �nite alphabet. Let L be a language on A. Let x and y be

words in L. x is called a left factor of y, x � y in symbols, if 9 word z 2 A� : xz = y.

For a language L � A�, we denote by LeftFactor(L) the set of all left factors of words in L, i. e.,

LeftFactor(L) = fx 2 A� j 9y 2 L : x � yg.

De�nition (1.2.5.2): Let A be a �nite alphabet.

A language L � A� is called strictly monogeneous if 9 words u; v 2 A� : L � LeftFactor(uv�).

A language L � A� is called monogeneous if it is equal to a �nite union of strictly monogeneous lan-

guages, i. e., L �
[

i=1;:::;k

LeftFactor(uiv
�
i ), where 8 i 2 f1; : : : ; kg : ui; vi 2 A�.

De�nition (1.2.5.3): Let (FPN;M0) be a marked FIFO Petri Net. Let p 2 P be a place of

FPN .
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� p is called structurally monogeneous, if 9 word up 2 A� such that 8 t 2 T : F (t; p) 2 u�p.

� p is called strictly monogeneous if LI(FPN;M0; p) is strictly monogeneous.

� p is called monogeneous if LI (FPN;M0; p) is monogeneous.

(FPN;M0) is called a Monogeneous (Structurally Monogeneous, Strictly Monogeneous, respectively)

FIFO Petri Net if, and only if, each of its places is monogeneous (structurally monogeneous, strictly

monogeneous, respectively).

Unfortunately, there exists no common understanding of these terms in the literature. In [Rou87]

for example, the term monogeneous is used instead of strictly monogeneous and semi{monogeneous is

used instead of monogeneous. Even more confusing, in [Sta83] and [Fin84] the term monogeneous is

used for the weaker structurally monogeneous.

While undecidable in the general case, [Fin86] provides many su�cient and necessary conditions for

a FIFO Petri Net to be monogeneous.

Linear FIFO Petri Nets

In this part, we follow the notation in [FR88].

De�nition (1.2.5.4): Let A be a �nite alphabet. A language L � A� is called bounded or linear

if L is included in a�1 : : : a
�
n for some a1; : : : ; an 2 A with 8 i 6= j : ai 6= aj.

De�nition (1.2.5.5): Let (FPN;M0) be a marked FIFO Petri Net. Let p 2 P be a place of

FPN . p is called linear if its input language is bounded.

(FPN;M0) is called a Linear FIFO Petri Net (LFPN) if, and only if, each of its places is linear and

has as its initial marking an element of a�1.

De�nition (1.2.5.6): Let (FPN;M0) be a marked LFPN with FPN = (P; T;B; F;Q). Let SM

be a set of markings over P . SM is called a Structured Set of Terminal Markings (SSTM) with respect

to (FPN;M0) if, and only if:

(i) membership in SM is decidable,

(ii) M0 2 SM ,



9

(iii) 8x; y 2 T � : (M0(xy > M ^M0(x > M 0 ^M 2 SM ) ) M 0 2 SM (i. e., each marking reached

on a path into SM must be in SM ), and

(iv) 8x 2 T � : (M 2 SM ^M (xi > Mi; i � 1 ^M � M1 ^ M1 2 SM ) ) 8i � 1 : Mi 2 SM

(i. e., any sequence of transitions which when applied to a marking in SM terminates at another

marking in SM and can be repeated inde�nitely without leaving SM ).

The notation M �M1 relates to the de�nition of left factors. M �M1 if, and only if, for all places

p 2 P the markingM of p is a left factor of the marking M1 of p.

De�nition (1.2.5.7): Let (FPN;M0) be a marked LFPN with FPN = (P; T;B; F;Q). Let SM

be a structured set of terminal markings over P . (FPN;M0; SM ) is called a Linear FIFO Petri Net

having a Structured Set of Terminal Markings (SSTM{LFPN). The set of �ring sequences (language)

of (FPN;M0; SM ) is FS(FPN;M0; SM ) = fx j x 2 T �;M0(x > M;M 2 SMg.

The reachability tree for (FPN;M0; SM ) is simply the reachability tree for (FPN;M0) pruned by

truncating a path whenever it leaves SM . Therefore, the following holds for the reachability set of

(FPN;M0; SM ):

RS(FPN;M0; SM ) = RS(FPN;M0) \ SM

Topologically Free Choice FIFO Petri Nets

In this part, we follow the notation in [FC88].

De�nition (1.2.5.8): Let (FPN;M0) be a marked FIFO Petri Net. Let p 2 P be a place of the

FIFO Petri Net.

� The input alphabet of p is the set of all letters that appear in the valuation of at least one input

arc of p.

� The output alphabet of p is the set of all letters appearing in the valuations of the output arcs.

� The alphabet of p, denoted by Ap, is the union of the input alphabet and the output alphabet.
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De�nition (1.2.5.9): Let (FPN;M0) be a marked FIFO Petri Net. Let p 2 P be a place and

t 2 T be a transition of the FIFO Petri Net. We de�ne:

�(p) = fv 2 T j B(p; v) 6= �g

�(t) = fv 2 P j F (t; v) 6= �g

��(p) = fv 2 T j F (v; p) 6= �g

��(t) = fv 2 P j B(v; t) 6= �g

De�nition (1.2.5.10): Let (FPN;M0) be a marked FIFO Petri Net. (FPN;M0) is called

normalized if the following three conditions are satis�ed:

(i) Each place p 2 P is balanced, i. e., the input alphabet is identical to the output alphabet.

(ii) 8p 2 P 8t 2 �(p) : B(t; p) 2 Q, i. e., each place is semi{alphabetic.

(iii) 8p 2 P : M0(p) 2 A�
p.

De�nition (1.2.5.11): Hack's condition for free choice Petri Nets reads as follows: A place p in

a Petri Net is free choice if, and only if, we have:

j �(p) j> 1 ) 8t 2 �(p) : ��(t) = fpg

De�nition (1.2.5.12): Let (FPN;M0) be a marked FIFO Petri Net. (FPN;M0) is called an

Extended Topologically Free Choice FIFO Petri Net (ETFC{FPN) if, and only if, the following two

conditions are satis�ed:

� (FPN;M0) is normalized.

� 8p 2 P : j Ap j> 1 ) p satis�es the Hack's condition.

1.3 Subclasses of Formalized Data Flow Diagrams

We assume that the reader is familiar with the concept of FDFD's given in [LWBL96] and [SB96a].

A short summary of [LWBL96] and de�nitions of Reduced Data Flow Diagrams (RDFD's) and persis-

tent 
ow{free Reduced Data Flow Diagrams (PFF{RDFD's) is given in [SB96a] as well. Here, we will

only provide three basic de�nitions related to FDFD's.
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De�nition (1.3.1): A Formalized Data Flow Diagram (FDFD) is a quintuple

FDFD = (B ;FLOWNAMES ;TYPES ;P ;F );

where B is a set of bubbles, FLOWNAMES is a set of 
ows, TYPES is a set of types, P is the set

fpersistent, consumableg and F = B � FLOWNAMES � TYPES � B � P . The following notational

convention for members from these domains is used: b 2 B ; fn 2 FLOWNAMES ; T 2 TYPES ; p 2

P ; f 2 F .

De�nition (1.3.2): A �ring sequence (computation sequence) of an FDFD is a possibly in�nite

sequence (bi; ai; ji) 2 B�fC;Pg�IN; i � 0; such that, if transition (bi; ai; ji) is �red in state (bm ; r; fs),

then

(fs0; r0) =

8<
:

(Consume(bi))ji(fs ; r); if ai = C

(Produce(bi))ji(fs; r); if ai = P

bm0(bi) =

8<
:

working ; if ai = C

idle; if ai = P

bm
0(b) = bm(b) 8 b 2 B � fbig

and

(bm; r; fs)! (bm 0; r0; fs0).

We introduce the notation (bm; r; fs)[(b; a; j)] to indicate that transition (b; a; j) is �reable in state

(bm; r; fs) and (bm ; r; fs)[(b; a; j)](bm0; r0; fs0) to indicate that state (bm 0; r0; fs0) is reached upon the

�ring of transition (b; a; j) in state (bm; r; fs).

By induction, we extend this notation for �ring sequences:

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn�1; an�1; jn�1); (bn; an; jn)]

is used to indicate that transition (bn; an; jn) is �reable in state (bmn�1; rn�1; fsn�1), given that

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn�1; an�1; jn�1)](bmn�1; rn�1; fsn�1)

holds. By analogy, we use

(bm0; r0; fs0)[(b1; a1; j1); : : : ; (bn; an; jn)](bmn; rn; fsn)

to indicate that state (bmn; rn; fsn) is reached upon the �ring of the sequence (b1; a1; j1); : : : ; (bn; an; jn).
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De�nition (1.3.3): The set of �ring sequences (set of computation sequences, language) of an

FDFD, denoted by FS (FDFD; 
initial), is the set containing all �ring sequences that are possible for

this FDFD, given 
initial = (bm initial; rinitial; fsinitial) = (bm0; r0; fs0), i. e.,

FS (FDFD; 
initial) = fs j s 2 (B � fC;Pg� IN )� ^ 
initial[s]g:

An element s 2 (B � fC;Pg � IN )� is said to be in the center of (FDFD; 
initial), denoted by

C(FDFD; 
initial), if, and only if, 
initial[s]
 and FS(FDFD; 
) is in�nite.

We give the next de�nition in analogy to De�nition (1.2.4.1):

De�nition (1.3.4): For a given FDFD with initial state 
initial = (bminitial; rinitial; fsinitial), we

de�ne the following decidability problems:

Total Deadlock Problem (TDP): Is FS (FDFD; 
initial) �nite?

Partial Deadlock Problem (PDP): Is there a �nite path in (FDFD; 
initial) that can not be ex-

tended, i. e., does there exist an s 2 (B � fC;Pg� IN )� such that 
initial[s]
 where no transition

(b; a; j) 2 (B � fC;Pg� IN ) is �reable in state 
?

Boundedness Problem (BP): Is RS (FDFD; 
initial) �nite?

Reachability Problem (RP): For a state 
, is 
 2 RS (FDFD; 
initial)?

Quasi{Liveness Problem (QLP): 8 (b; a; j) 2 (B�fC;Pg� IN ), is there an s 2 (B�fC;Pg� IN )�

such that 
initial[s; (b; a; j)] ?

Liveness Problem (LP): 8 
 2 RS (FDFD; 
initial) 8 (b; a; j) 2 (B � fC;Pg � IN ), is there an

s 2 (B � fC;Pg� IN )� such that 
[s; (b; a; j)] ?

Center Problem (CP): Is there an algorithm that will generate a recursive representation of

C(FDFD; 
initial)?

Regularity Problem (RegP): Is FS (FDFD; 
initial) regular?

1.3.1 Monogeneous (PFF{)RDFD's

Our de�nitions of Monogeneous (PFF{)RDFD's are related to the de�nitions of monogeneous lan-

guages and Monogeneous FIFO Petri Nets as given in [Fin86] and [FR88], summarized in Subsection

1.2.5.



13

De�nition (1.3.1.1): For each 
ow f 2 F of an FDFD, we de�ne

If : (B � fC;Pg� IN ) � (BubbleMode � Read � FlowState)! OBJECTS [ f<>g

such that

If ((b; a; j); (bm; r; fs)) =

8<
:

o; if a = P and (Produce(b))j = Out(o; f; b)(fs; r)

<>; otherwise

where (b; a; j) 2 (B � fC;Pg� IN ) is a transition and (bm ; r; fs) 2 (BubbleMode �Read � FlowState)

is a state of the FDFD.

By induction, we de�ne If for �ring sequences:

If : (B � fC;Pg� IN )n+1 � (BubbleMode �Read � FlowState)! (OBJECTS [ f<>g)�

such that

If (((b0; a0; j0); : : : ; (bn�1; an�1; jn�1); (bn; an; jn)); (bm; r; fs)) =

If (((b0; a0; j0); : : : ; (bn�1; an�1; jn�1)); (bm; r; fs)) � If ((bn; an; jn); (bm
0; r0; fs 0)),

where (bm ; r; fs)[(b0; a0; j0); : : : ; (bn�1; an�1; jn�1)](bm
0; r0; fs 0) and \�"means the concatenation of words.

Finally, the input language of a 
ow f 2 F of an FDFD with initial state 
initial = (bminitial; rinitial; fsinitial)

is de�ned as

~If := If (FS (FDFD; 
initial); 
initial)

= fIf (s; 
initial) j s 2 FS (FDFD; 
initial)g

De�nition (1.3.1.2): Let f 2 F be a 
ow of an FDFD.

� f is called structurally monogeneous if 9uf 2 OBJECTS [ f<>g 8 (b; a; j) 2 (B � fC;Pg �

IN ) 8 (bm; r; fs) 2 (BubbleMode � Read � FlowState) :

If ((b; a; j); (bm; r; fs)) =

8<
:

uf ; if a = P and (Produce(b))j = Out(uf ; f; b)(fs; r)

<>; otherwise

� f is called strictly monogeneous if ~If is strictly monogeneous.

� f is called monogeneous if ~If is monogeneous.

A structurally monogeneous 
ow of an FDFD is more restricted than a structurally monogenous

place of a FIFO Petri Net. In the FDFD, a single object uf 2 OBJECTS (or nothing) is appended

to the 
ow, while in the FIFO Petri Net an entire word up 2 A� can be appended to the place. This
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limited behavior of the FDFD is caused by the built{in restrictions on Produce (see [LWBL96]) that do

not allow expressions such as Out(uf ; f;X)(Out(uf ; f;X)(fs; r)), i. e., each out
ow f can be addressed

at most once in a single Produce case of bubble X.

De�nition (1.3.1.3): A (PFF{)RDFD is called a Monogeneous (Structurally Monogeneous,

Strictly Monogeneous, respectively) (PFF{)RDFD if, and only if, each of its 
ows f 2 F is mono-

geneous (structurally monogeneous, strictly monogeneous, respectively).

Note that every Structurally Monogeneous (PFF{)RDFD is also a Strictly Monogeneous (PFF{)

RDFD, which is also a Monogeneous (PFF{)RDFD, i. e., Monogeneous (PFF{)RDFD's are the most

general of these subclasses. If we state that a condition holds for Monogeneous (PFF{)RDFD's this ob-

viously includes Structurally Monogeneous (PFF{)RDFD's and Strictly Monogeneous (PFF{)RDFD's.

Example (1.3.1.4): This example of an PFF{RDFD presents a simple communication protocol.

Each participant, A and B, can initiate the communication but then has to wait for an acknowledgement

from the other participant that matches its own message. It should be obvious that in this example we

always have Head (fs(BA)) = Head(fs(lastA)) if both are not ?, and Head (fs(AB)) = Head(fs(lastB))

if both are not ?. In a system where erraneous channels are modeled instead of 
ows AB and BA, the

current speci�cation of bubbles A and B will most likely produce several deadlock states.

The mappings Enabled , Consume, and Produce for the FDFD shown in Figure 1.1 are de�ned as:

Enabled (A) = �fs :

(:IsEmpty(initA) ^Head(fs(initA)) = a)

_(:IsEmpty(BA) ^Head (fs(BA)) = a

^:IsEmpty(lastA) ^Head (fs(lastA)) = a)

_(:IsEmpty(BA) ^Head (fs(BA)) = b

^:IsEmpty(lastA) ^Head (fs(lastA)) = b)

Enabled (B) = �fs :

(:IsEmpty(initB) ^Head (fs(initB)) = a)

_(:IsEmpty(AB) ^Head (fs(AB )) = a

^:IsEmpty(lastB) ^Head(fs(lastB)) = a)

_(:IsEmpty(AB) ^Head (fs(AB )) = b

^:IsEmpty(lastB) ^Head(fs(lastB)) = b)
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Figure 1.1: Example of a Strictly Monogeneous PFF{RDFD.

Transition

Consume(A) = �(fs ; r) :

fif (:IsEmpty(initA) ^Head (fs(initA)) = a)

then In(initA; A)(fs; r) (A, C, 1)

�;

if (:IsEmpty(BA) ^Head (fs(BA)) = a

^:IsEmpty(lastA) ^Head (fs(lastA)) = a)

then In(BA; A)(In(lastA; A)(fs; r)) (A, C, 2)

�;

if (:IsEmpty(BA) ^Head (fs(BA)) = b

^:IsEmpty(lastA) ^Head (fs(lastA)) = b)

then In(BA; A)(In(lastA; A)(fs; r)) (A, C, 3)

�

g

Consume(B) = �(fs ; r) :

fif (:IsEmpty(initB) ^Head(fs(initB)) = a)

then In(initB; B)(fs ; r) (B, C, 1)

�;

if (:IsEmpty(AB ) ^Head (fs(AB )) = a

^:IsEmpty(lastB) ^Head(fs(lastB)) = a)
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then In(AB ; B)(In(lastB; B)(fs ; r)) (B, C, 2)

�;

if (:IsEmpty(AB ) ^Head (fs(AB )) = b

^:IsEmpty(lastB) ^Head(fs(lastB)) = b)

then In(AB ; B)(In(lastB; B)(fs ; r)) (B, C, 3)

�

g

Produce(A) = �(fs; r) :

fif r(A)(initA) = a

then Out(a;AB ; A)(Out(a; lastA; A)(fs; r)) (A, P, 1)

�;

if r(A)(BA) = a ^ r(A)(lastA) = a

then Out(b;AB ; A)(Out(b; lastA; A)(fs; r)) (A, P, 2)

�;

if r(A)(BA) = b ^ r(A)(lastA) = b

then Out(a;AB ; A)(Out(a; lastA; A)(fs; r)) (A, P, 3)

�

g

Produce(B) = �(fs ; r) :

fif r(B)(initB) = a

then Out(a;BA; B)(Out(a; lastB ; B)(fs; r)) (B, P, 1)

�;

if r(B)(AB ) = a ^ r(B)(lastB) = a

then Out(b;BA; B)(Out(b; lastB; A)(fs; r)) (B, P, 2)

�;

if r(B)(BA) = b ^ r(A)(lastB) = b

then Out(a;BA; B)(Out(a; lastB ; B)(fs; r)) (B, P, 3)

�

g

Initially, initA and initB contain an a. All other 
ows are empty. Valid �ring sequences are, for example,

(A;C; 1); (A;P;1); (B;C; 1); (B;P; 1);
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(A;C; 2); (A;P;2); (B;C; 2); (B;P; 2); (A;C;3); (A;P; 3); (B;C;3); (B;P; 3);

(A;C; 2); (A;P;2); (B;C; 2); (B;P; 2); (B;C; 3); (B;P; 3); (A;C;3); (A;P; 3); : : :

and

(B;C; 1); (A;C;1); (A;P; 1); (B;P; 1);

(B;C; 2); (B;P; 2); (A;C;2); (A;P; 2); (A;C;3); (B;C; 3); (B;P;3); (A;P; 3);

(A;C; 2); (B;C;2); (B;P;2); (A;P; 2); (B;C; 3); (A;C; 3); (B;P;3); (A;P; 3); : : : :

We have ~IinitA = ~IinitB = fag and ~IAB = ~IBA = ~IlastA = ~IlastB = LeftFactor((ab)�). Thus, 
ows initA

and initB are structurally monogeneous, and 
ows AB, BA, lastA, and lastB are strictly monogeneous.

Overall, the PFF{RDFD is strictly monogeneous.

Theorem (1.3.1.5): Every Monogeneous (Structurally Monogeneous, Strictly Monogeneous,

respectively) PFF{RDFD can be simulated by a Monogeneous (Structurally Monogeneous, Strictly

Monogeneous, respectively) FIFO Petri Net with respect to an isomorphism h.

Proof: In [SB96a] it has been shown that every PFF{RDFD can be simulated by a FIFO Petri Net

with respect to an isomorphism h. Therefore, we only have to show that this isomorphism h maps

every monogeneous (structurally monogeneous, strictly monogeneous, respectively) 
ow f 2 F of the

PFF{RDFD to a monogeneous (structurally monogeneous, strictly monogeneous, respectively) place of

the FIFO Petri Net.

First, we want to recall from [SB96a] that the set of places PFPN of the related FIFO Petri Net can

be split into three disjoint subsets, (i) representing the 
ows of the PFF{RDFD, (ii) the idle working

mode of the bubble, and (iii) the working working mode (including the values that have been read) of

the bubble, i. e.,

PFPN = ff1; : : : ; ffg

[fb1;idle; : : : ; bb;idleg

[
[

i2f1;:::;bg

�
fbi;working:1 j Consume(bi) is of type C1g

[fbi;working:1; : : : ; bi;working:mi
j Consume(bi) is of type C2,

mi = (# of cases in Consume(bi))g

�

Now, we consider each of the subsets of places in PFPN , with h given as in Theorem (3.1.1) in [SB96a]:

(i) p 2 ff1; : : : ; ffg:

SinceMFPN (p) = fs(p) by de�nition, the contents of each place of the FIFO Petri Net is identical

to the contents of the corresponding 
ow of the PFF{RDFD. Also, a new value is appended to
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place p if, and only if, the related value is appended to the corresponding 
ow. Hence, since


ow p is monogeneous (structurally monogeneous, strictly monogeneous, respectively), place p is

monogeneous (structurally monogeneous, strictly monogeneous, respectively), too.

(ii) p 2 fb1;idle; : : : ; bb;idleg:

The only value that is appended to place p is I. Therefore, p is structurally monogeneous (which

implies that it is strictly monogeneous and monogeneous).

(iii) p 2 fb1;working:1; : : : ; b1;working:m1
; : : : ; bb;working:1; : : : ; bb;working:mb

g:

The only value that is appended to place p isW . Therefore, p is structurally monogeneous (which

implies that it is strictly monogeneous and monogeneous).

So, since the PFF{RDFD is monogeneous (structurally monogeneous, strictly monogeneous, respec-

tively), i. e., each of its 
ows is monogeneous (structurally monogeneous, strictly monogeneous, respec-

tively), the FIFO Petri Net is monogeneous (structurally monogeneous, strictly monogeneous, respec-

tively), too.

Example (1.3.1.6): The previous Theorem does not hold in general for RDFD's with persistent


ows. Consider the RDFD given in Figure 1.2.
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Figure 1.2: Example of a Strictly Monogeneous RDFD with Persistent Flow.

The mappings Enabled , Consume, and Produce are speci�ed as follows:

Enabled (A) = �fs :

(:IsEmpty(last) ^Head(fs(last)) = 0)

_(:IsEmpty(last) ^Head(fs(last)) = 1)

Enabled (B) = �fs :

Head (fs(f )) = 0 _Head (fs(f )) = 1
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Consume(A) = �(fs ; r) :

fif (:IsEmpty(last) ^Head (fs(last)) = 0)

then In(last ; A)(fs; r)

�;

if (:IsEmpty(last) ^Head (fs(last)) = 1)

then In(last ; A)(fs; r)

�

g

Consume(B) = �(fs ; r) :

fif Head(fs(f )) = 0

then In(f ; B)(fs; r)

�;

if Head(fs(f )) = 1

then In(f ; B)(fs; r)

�

g

Produce(A) = �(fs; r) :

fif r(A)(last) = 0

then Out(1; f ; A)(Out(1; last; A)(fs; r))

�;

if r(A)(last) = 1

then Out(0; f ; A)(Out(0; last; A)(fs; r))

�

g

Produce(B) = �(fs ; r) : f(fs; [bi 7! �f :?]r)g

Initially, f and last contain a 0. Obviously, ~Ilast = ~If = LeftFactor((01)�), i. e., 
ows last and f

are strictly monogeneous. Overall, the RDFD is strictly monogeneous. The equivalent FIFO Petri Net

constructed according to [SB96a] is given in Figure 1.3. Since LI(FPN; M0; last) = LeftFactor((01)�),

place last is strictly monogeneous, but since LI(FPN;M0; f ) = LeftFactor((0+1+)�), place f is not

strictly monogeneous (it is not even monogeneous).
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Figure 1.3: FIFO Petri Net Equivalent to a Monogeneous RDFD with Persistent Flow.

Corollary (1.3.1.7): The following problems are decidable for Monogeneous (Structurally Mono-

geneous, Strictly Monogeneous, respectively) PFF{RDFD's: TDP, PDP, BP, RP, QLP, LP, and RegP.

The center of a Monogeneous (Structurally Monogeneous, Strictly Monogeneous, respectively) PFF{

RDFD is e�ectively realizable, i. e., the CP is decidable.

Proof: All problems are decidable with respect to Monogeneous (Structurally Monogeneous, Strictly

Monogeneous, respectively) FIFO Petri Nets ([Fin86], [FR88]). We have shown that there exists an

isomorphism h between Monogeneous (Structurally Monogeneous, Strictly Monogeneous, respectively)

PFF{RDFD's and Monogeneous (Structurally Monogeneous, Strictly Monogeneous, respectively) FIFO

Petri Nets.

� According to the note following Theorem (1.2.2.5), h preserves TDP, PDP, BP, RP, and LP

([KM82]).

� QLP is decidable since LP is decidable with 
 = 
initial.

� CP is decidable for Monogeneous (Structurally Monogeneous, Strictly Monogeneous, respectively)

FIFO Petri Nets ([FR88]).

Since � is bijective, x 2 C(PFF-RDFD; 
initial) , �(x) 2 C(FPN;M0) where M0 = �(
initial).
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� RegP is decidable for Monogeneous (Structurally Monogeneous, Strictly Monogeneous, respec-

tively) FIFO Petri Nets ([FR88]).

Since � is bijective, FS(PFF-RDFD; 
initial) is regular , � (FS(FPN;M0)) is regular where

M0 = �(
initial).

Without giving a de�nition of a Petri Net (see [Pet81], for example), we state the next corollary:

Corollary (1.3.1.8): Every Monogeneous (Structurally Monogeneous, Strictly Monogeneous,

respectively) PFF{RDFD can be simulated by a deterministic Petri Net.

Proof: In [Sta83] and [Fin84] it is shown that every Structurally Monogeneous FIFO Petri Net can

be simulated by a labelled Petri Net.2 In [FR88] it is shown that every Monogeneous FIFO Petri Net

can be simulated by a deterministic Petri Net. Therefore, we can simulate any given Monongeneous

PFF{RDFD by a Monogeneous FIFO Petri Net which is then simulated by a Petri Net.

The key point in this series of simulations is that every solvable decidability problem for Petri Nets

remains decidable for Monogeneous FIFO Petri Nets ([Fin84]) and for Monogeneous PFF{RDFD's.

Solution techniques such as the reachability tree and matrix equation approaches can be used to de-

termine other properties such as safeness, boundedness, conservation, and coverability for Petri Nets

([Pet81]). Therefore, we immediately have solution techniques to answer related questions for Mono-

geneous PFF{RDFD's.

1.3.2 Linear RDFD's

Our de�nitions of Linear RDFD's are related to the de�nitions of Linear FIFO Petri Nets as given

in [FR88], summarized in Subsection 1.2.5.

De�nition (1.3.2.1): Let f 2 F be a 
ow of an FDFD. f is called linear if its input language is

bounded.

De�nition (1.3.2.2): An RDFD is called a Linear RDFD (L{RDFD) if, and only if, each of its


ows is linear and has as its initial 
ow state an element of a�1, where a1 2 OBJECTS .

2Note that in these two references the term monogeneous is used instead of the term structurally monogeneous which
is used within this paper.
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De�nition (1.3.2.3): Let 
0 2 � be the initial state of an L{RDFD. Let S� be a set of states

over � = (BubbleMode � Read � FlowState). S� is called a Structured Set of Terminal States (SSTS)

with respect to (L{RDFD; 
0) if, and only if:

(i) membership in S� is decidable,

(ii) 
0 2 S�,

(iii) 8x; y 2 (B � fC;Pg� IN )� : (
0[x; y]
 ^ 
0[x]
0 ^ 
 2 S�) ) 
0 2 S� (i. e., each state reached

on a path into S� must be in S�), and

(iv) 8x 2 (B�fC;Pg� IN )� : (
 2 S�^
[xi]
i; i � 1^
 � 
1^
1 2 S�) ) 8i � 1 : 
i 2 S� (i. e.,

any sequence of transitions which when applied to a state in S� terminates at another state in

S� and can be repeated inde�nitely without leaving S�).

De�nition (1.3.2.4): Let 
1 = (bm1; r1; fs1); 
2 = (bm2; r2; fs2) 2 � be states of an FDFD. We

say that 
1 � 
2 if, and only if, the following three conditions hold:

� 8b 2 B : bm1(b) = bm2(b)

� 8b 2 B 8f 2 F : r1(b)(f) = r2(b)(f)

� 8f 2 F : fs1(f) � fs2(f), i. e., fs1(f) is a left factor of fs2(f).

De�nition (1.3.2.5): Let 
0 2 � be the initial state of an L{RDFD. Let S� be a set of states

over � = (BubbleMode � Read � FlowState). (L-RDFD; 
0; S�) is called a Linear RDFD having a

Structured Set of Terminal States (SSTS{L{RDFD). The set of �ring sequences of (L-RDFD; 
0; S�) is

FS(L-RDFD; 
0; S�) = fs j s 2 (B � fC;Pg� IN )� ^ 
0[s]
 ^ 
 2 S�g.

Theorem (1.3.2.6): Every (SSTS{)L{RDFD (with a Structured Set of Terminal States S�) with

initial state 
initial can be simulated by a Linear FIFO Petri Net (with a Structured Set of Terminal

Markings �(S�)) with respect to an isomorphism h.

Proof: Similar to the proof of Theorem (1.3.1.5), we distinguish among four di�erent types of places

in PFPN :

(i) p 2 ff1; : : : ; ffg ^Consumable(p):

SinceMFPN (p) = fs(p) by de�nition, the contents of each place of the FIFO Petri Net is identical
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to the contents of the corresponding 
ow of the L{RDFD. Also, a new value is appended to place

p if, and only if, the related value is appended to the corresponding 
ow. Hence, since 
ow p is

linear, place p is linear, too.

(ii) p 2 ff1; : : : ; ffg ^ :Consumable(p):

SinceMFPN (p) = fs(p) by de�nition, the contents of each place of the FIFO Petri Net is identical

to the contents of the corresponding 
ow of the L{RDFD. A new value is appended to place p if,

and only if, one of two possible cases occurs:

(a) The related value is appended to the corresponding 
ow. Then, since 
ow p is linear, place

p is linear, too.

(b) A value is read from the corresponding persistent 
ow (but it is not removed from this 
ow).

This relates to removing the head element and appending the new value (which is the same

as the value which has been removed) to this place upon �ring of a transition of the FIFO

Petri Net. Since our mapping from RDFD's to FIFO Petri Nets guarantees that places

representing persistent 
ows contain exactly one token at a time, this new value appended to

place p is automatically the head element of this place. Therefore, if in the L{RDFD the word

: : :anii : : : occurs as input to 
ow p, the word : : :ani1i aia
ni2
i : : :, where ni1 � 1; ni = ni1+ni2,

will occur as input to place p in the FIFO Petri Net. Hence, place p is linear.

(iii) p 2 fb1;idle; : : : ; bb;idleg:

The only value that is appended to place p is I. The input language of p is I� with initial marking

I. Therefore, p is linear.

(iv) p 2 fb1;working:1; : : : ; b1;working:m1
; : : : ; bb;working:1; : : : ; bb;working:mb

g:

The only value that is appended to place p is W . The input language of p is W � with initial

marking <>. Therefore, p is linear.

So, since the L{RDFD is linear, i. e., each of its 
ows is linear, the FIFO Petri Net is linear, too. Now, we

still have to show that �(S�) is a Structured Set of TerminalMarkings with respect to (FPN; �(
initial)).

Since � is bijective, 
 2 S� , �(
) 2 �(S�). Since � is bijective, s 2 FS(L-RDFD; 
initial; S�) ,

� (s) 2 FS(FPN; �(
initial); �(S�)). Therefore, �(S�) is a SSTM of the FIFO Petri Net since S� is a

SSTS of the L{RDFD.
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Formally, we can incorporate the notation of a Structured Set of Terminal States S� into the

transitions rules (see [LWBL96], [SB96a]) that are allowed between con�gurations of FDFD's. The

modi�ed transition rules now read as follows:

bm(b) = idle;

Enabled (b)(fs) = true;

bm 0 = [b 7! working]bm;

(fs 0; r0) 2 Consume(b)(fs; r)

(bm0; r0; fs0) 2 S�

(bm ; r; fs) �! (bm 0; r0; fs0)

and

bm(b) = working;

bm
0 = [b 7! idle]bm;

(fs 0; r0) 2 Produce(b)(fs; r)

(bm0; r0; fs0) 2 S�

(bm ; r; fs) �! (bm 0; r0; fs0)

Of course, it must be decidable whether (bm0; r0; fs0) 2 S� holds.

There are two obvious advantages of having a SSTS for FDFD's (and not only for L{RDFD's):

� A computerized evaluation of a given FDFD, for example by using the software described in

[Wah95], may be restricted to those states that are of particular interest to the system analyst.

� The introduction of an SSTS is an additional approach to modify the qualitative behavior of

an FDFD. For example, consider an FDFD where a communication protocol with erraneous

channels has been modeled. Assume we also have been able to identify a set of error states,

ES. Then, if we want to analyze a similar communication protocol where no erraneous channels

occur, we do not have to modify the FDFD itself, but just have to introduce the SSTS S� =

RS (FDFD; 
initial) � ES, such that it is impossible for the system to enter any of the error

states.

Corollary (1.3.2.7): The following problems are decidable for (SSTS{)L{RDFD's: TDP, PDP,

BP, RP, and QLP.

Proof: All problems are decidable with respect to (SSTM{)LFPN's ([FR88]). We have shown that

there exists an isomorphism h between (SSTS{)L{RDFD's and SSTM{LFPN's.
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� According to the note following Theorem (1.2.2.5), h preserves TDP, PDP, BP, and RP ([KM82]).

� QLP is decidable for (SSTM{)LFPN's ([FR88]).

Since � and � are bijective, 8(b; a; j) 2 (BRDFD � fC;Pg� IN ) 9s 2 (BRDFD � fC;Pg� IN )� :


initial[s; (b; a; j)] holds , 8t 2 TFPN 9~x 2 T �
FPN : M0(~xt > holds, where M0 = �(
initial),

t = � ((b; a; j)), and ~x = � (s).

1.3.3 Topologically Free Choice RDFD's

Our de�nitions of Topologically Free Choice RDFD's are related to the de�nitions of Topologically

Free Choice FIFO Petri Nets as given in [FC88], summarized in Subsection 1.2.5.

De�nition (1.3.3.1): Let f 2 F be a 
ow of an FDFD.

The output alphabet AOf of a 
ow f is de�ned as

AOf = fo j 9b 2 B 9j 2 IN : (Consume(b))j = : : :Head(fs(f)) = o : : :g:

The input alphabet AIf of a 
ow f is de�ned as

AIf = fi j 9b 2 B 9j 2 IN : (Produce(b))j = : : :Out(i; f; b) : : :g:

The alphabet Af of a 
ow f is de�ned as Af = AOf [AIf .

The output alphabet AOf is a subset of OBJECTS that might be read from a 
ow f in accordance

with the mapping Consume. The input alphabet AIf is a subset of OBJECTS that might be written

to a 
ow f in accordance with the mapping Produce. These de�nitions are only related to the static

structure of the FDFD. It is not necessarily required that all OBJECTS a 2 Af will actually appear

on this 
ow for any �ring sequence or any initial state 
initial.

De�nition (1.3.3.2): The set of 
ows F of an FDFD with initial state 
initial = (bminitial; rinitial;

fsinitial) is called normalized, if the following two conditions are satis�ed:

� each 
ow f 2 F is balanced, i. e., AIf = AOf = Af (the input alphabet is equal to the output

alphabet),

� 8f 2 F : fsinitial(f) 2 A�
f .
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The de�nition of a normalized FIFO Petri Net requires that each place p 2 P is semi{alphabetic,

i. e., at most one element of the alphabet A is consumed from p in each step. However, this is already

part of our de�nition of RDFD's which states that for a bubble b 2 B, the mappings Enabled (b) and

Consume(b) only make use of the head element of a 
ow f 2 Inputs(b). Hence, each 
ow is semi{

alphabetic in an RDFD. Actually, it is even alphabetic since a similiar restriction prevents Produce(b)

to write more than one element at a time to a 
ow f 2 Outputs(b).

In particular, the restriction to a set of normalized 
ows is no restriction of the power of RDFD's but

guarantees, a priori, that there will never be an object o 2 OBJECTS which can not even potentially

be removed from a 
ow f 2 F , in at least one Consume(b) case. Of course, it must hold that all other


ows in this Consume(b) case have the appropriate head element before this object actually can be

removed.

In analogy to Hack's de�nition for free choice Petri Nets we extend this de�nition for RDFD's:

De�nition (1.3.3.3): Let f 2 F be a 
ow of an FDFD and b 2 B the bubble where f 2 Inputs(b).

f is called free choice (it satis�es the Hack condition) if, and only if, it ful�lls one of two possible

conditions:

� A statement of the form \: : :Head(fs(f)) : : :" occurs only in one single case in Enabled=Consume

of bubble b, or

� for all cases in Enabled=Consume of bubble b that contain \: : :Head (fs(f)) : : :", f is the only 
ow

that is used for this case (throughout the statement we have \:IsEmpty(fs(f))^Head(fs(f)) = i"

for some i's).

The main idea of this de�nition is to allow only controlled con
ict. In general, con
ict occurs when

several cases in bubble b 2 B could potentially read from the same 
ow f 2 F . By the de�nition of free

choice RDFD's, if a 
ow f occurs in several cases in Enabled=Consume of bubble b (potential con
ict),

then it is the only 
ow accessed in any of these cases. Therefore, all of the con
icting cases that require

\Head(fs(f)) = i" are simultaneously activated, or none of them is activated since the 
ow is empty.

This allows the choice (con
ict resolution) to be made freely which case is to be selected. It does not

depend on the presence of other OBJECTS on other 
ows.

De�nition (1.3.3.4): An RDFD is called an Extended Topologically Free Choice RDFD (ETFC{

RDFD), if, and only if, the following two conditions are satis�ed:
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� the set of 
ows F is normalized, and

� 8f 2 F : j Af j> 1 ) f is free choice (it satis�es the Hack condition).

Since the set of 
ows is normalized, there exists for each 
ow f 2 F of an FDFD and b 2 B the

bubble where f 2 Inputs(b) at least one case in Enabled=Consume that can make use of the head

element of f , thus potentially go from idle to working, provided f and, if f occurs only in a single case,

all other 
ows that occur in this case, are not empty.

Unfortunately, our construction of FIFO Petri Nets based on a given EFCT{RDFD fails to provide

an EFCT{FIFO Petri Net. The problem is structurally inherited from the de�nition of the isomorphism

h. For each bubble in the RDFD, we introduce additional places in the FIFO Petri Net to store the

bubble's working mode and the values that have been read ([SB96a]). The place of the FIFO Petri Net

that represents the idle working mode of the RDFD causes the problem since it typically is not the

only input to serveral transitions of the FIFO Petri Net. Consider the following example:

Example (1.3.3.5): A simple FDFD with only two bubbles A and B connected by a 
ow f.
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Figure 1.4: EFCT{RDFD.

The mappings Enabled , Consume , and Produce for the FDFD shown in Figure 1.4 are speci�ed as

follows:

Enabled (A) = �fs : true

Enabled (B) = �fs :

(:IsEmpty(f ) ^Head(fs(f )) = 0)

_(:IsEmpty(f ) ^Head(fs(f )) = 1)

Consume(A) = �(fs ; r) : f(fs; r)g

Consume(B) = �(fs ; r) :

fif (:IsEmpty(f ) ^Head (fs(f )) = 0)

then In(f ; B)(fs; r)
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�;

if (:IsEmpty(f ) ^Head (fs(f )) = 1)

then In(f ; B)(fs; r)

�

g

Produce(A) = �(fs; r) :

fOut(0; f ; A)(fs; r);

Out(1; f ; A)(fs; r)g

Produce(B) = �(fs ; r) : f(fs; [B 7! �f :?]r)g

Initially, 
ow f is empty. According to [SB96a], the given RDFD transforms into the following marked

FIFO Petri Net FPN = ((PFPN ; TFPN ; BFPN ; FFPN ; QFPN );M0;FPN ):

PFPN = ffg [ fAi; Aw:1; Bi; Bw:1; Bw:2g

TFPN = fCA1; CB1; CB2g [ fPA1; PA2; PB1; PB2g

The initial marking M0;FPN is such that:

M0;FPN (Ai) =M0;FPN (Bi) = I

M0;FPN (Aw:1) =M0;FPN (Bw:1) =M0;FPN (Bw:2) =<>

M0;FPN (f) =<>

BFPN , FFPN , and QFPN can be gained from Figure 1.5.
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Figure 1.5: FIFO Petri Net.
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The resulting FIFO Petri Net is normalized. We have:

Af = f0; 1g

AAi = ABi = fIg

AAw:1
= ABw:1

= ABw:2
= fWg

Each place is semi{alphabetic and the condition for the initial marking M0;FPN is ful�lled. Since

j Af j= 2, we have to verify that f satis�es the Hack condition. Unfortunately, it does not. We have

�(f) = fCB1
; CB2

g and j �(f) j= 2 > 1, but ��1(CB1
) = ��1(CB2

) = ff;Big 6= ffg.

1.4 Summary

The basic idea of this article was not to de�ne completely new subclasses of RDFD's, but to extend

known subclasses of FIFO Petri Nets towards RDFD's. Once de�ned, we have seen that Monogeneous

PFF{RDFD's and Linear RDFD's are related to Monogeneous FIFO Petri Nets and Linear FIFO

Petri Nets, respectively, through isomorphisms. These isomorphisms maintain solutions of decidability

problems, thus allowing us to answer problems such as TDP, PDP, BP, RP, QLP, LP, RegP, and

CP for Monogeneous PFF{RDFD's and problems such as TDP, PDP, BP, RP, and QLP for Linear

RDFD's, based on methods and algorithms already available for FIFO Petri Nets. Unfortunately, our

mapping from RDFD's to FIFO Petri Nets fails for ETFC{RDFD's. We are working on a di�erent

homomorphism h0 between ETFC{RDFD's and ETFC{FIFO Petri Nets that hopefully will allow us to

answer decidability problems for ETFC{RDFD's based on their solution for ETFC{FIFO Petri Nets.

Future work is expected to move in the following directions: It is desirable to identify further

subclasses of RDFD's that allow the solution of (some) decidability questions. These new subclasses of

RDFD's will also relate to additional subclasses of FIFO Petri Nets. Therefore, it would be reasonable

to join research e�orts on FDFD's and on FIFO Petri Nets.

So far, there remain several open decidability problems for subclasses of RDFD's, since the related

problem is open for the corresponding subclass of FIFO Petri Nets. It is conjectured ([FR88]) that most

of these problems are decidable even though no proof or algorithm exists at this time. Further work

has to be done to identify which problem is (or is not) decidable for which subclass of RDFD's/FIFO

Petri Nets. Another interesting approach would be the extension of a method well{known for Petri

Nets | the reduction of the number of places of the Petri Net (e. g., [BR76]) | towards subclasses of

RDFD's/FIFO Petri Nets with the intent to solve decidability questions more e�ciently.

Finally, we must admit that there was no e�ort made so far that deals with the complexity and

e�ciency of the decidability algorithms. Even though many problems have been identi�ed as decidable
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for particular subclasses of RDFD's, no e�cient algorithm has yet been given. It is desireable to

determine (lower and upper) bounds for (time and space) complexity of possible algorithms and evaluate

given current (and future) algorithms with respect to these bounds.
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