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1 FORMALIZED DATA FLOW DIAGRAMS AND THEIR RELATION
TO OTHER COMPUTATIONAL MODELS

Abstract

One approach to the formalization of Data Flow Diagrams (DFD’s) is presented by Coleman ([Col91],
[CBY94]) and Leavens, et al., [LWBL96]. These Formalized Data Flow Diagrams (FDFD’s) can be viewed
as another model of computation. This paper contains an analysis of the computational power of these
FDFD’s. We first consider the issue whether certain features of FDFD’s affect their computational
power. A Reduced Data Flow Diagram (RDFD) is an FDFD with no stores, finite domains for flow
values, and no facility for testing for empty flows, but it may contain persistent flows. An RDFD
without persistent flows is called a persistent flow—free Reduced Data Flow Diagram (PFF-RDFD).
We show that PFF-RDFD’s are Turing equivalent. The other features of FDFD’s only add to the
expressive power of FDFD’s ([SB96]). Therefore, any FDFD can be expressed as an PFF-RDFD. Our
proof that PFF-RDFD’s are Turing equivalent procedes as follows. We first show that any RDFD can
be simulated by a FIFO Petri Net. We then show that any Program Machine can be simulated by an
PFF-RDFD. It is known that FIFO Petri Nets and Program Machines both are Turing equivalent.



1.1 Introduction

Traditional Data Flow Diagrams (DFD’s) are the cornerstone of the software development method-
ology known as “Structured Analysis” (SA) ([DeM78], [WM85a]), and they are probably the most
widely used specification technique in industry today ([BB93]). DFD’s are popular because of their
graphical representation and their hierarchical structure. Thus, they are ideally suited for users with
non—technical backgrounds and are commonly used to depict the static structure of information flow in
a system.

Traditional DFD’s consist of a set of bubbles and a set of labeled flows. Bubbles represent either
processes in a concurrent system or sequential procedures and are usually drawn as circles, ovals, or
boxes. Flows represent data paths and are drawn as arrows connecting the bubbles. Flows coming into
a bubble are called inflows and flows leaving a bubble are called outflows. Informally, a bubble reads
the information on its inflows, and produces new information on its outflows. There are two types of
flows. Persistent flows are like shared variables whose values are written by the source bubble and read
by the destination bubble. Consumable flows are modelled as unbounded FIFO queues, with the source
bubble enqueueing values on the queue and the destination bubble dequeueing values.

Even though traditional DFD’s are popular, they lack formality and do not provide a rigorous
definition of system functionality. Numerous attempts to formalize DFD’s have appeared in the technical
literature, e. g., in [DeM78], [WM85a], [WM85b], [Har87], [TP89], [You89], [Har92], and [Har96]. We
focus on the Formalized Data Flow Diagrams (FDFD’s) developed by Coleman, Wahls, Baker, and
Leavens in [Col91], [CB94], [WBL93], and [LWBL96]. We answer the following questions about the
computational power of FDFD’s. Do FDFD’s have the same computational power as FIFO Petri Nets,
another specification technique for concurrent and distributed systems? If so, to which class of FIFO
Petri Nets are FDFD’s equivalent? Are FDFD’s Turing equivalent?

After definitions of FDFD’s; Reduced Data Flow Diagrams (RDFD’s), persistent flow—free RDFD’s
(PFF-RDFD’s), FIFO Petri Nets, and Program Machines are given in Section 1.2, we answer the
above questions in Section 1.3. Indeed, we will show that PFF-RDFD’s and Turing Machines are
equivalent. Actually, we will not directly compare PFF-RDFD’s and Turing Machines, but instead
provide simulations of RDFD’s by FIFO Petri Nets and simulations of Program Machines by PFF-

RDFD’s. A summary and a preview of future work concludes this paper in Section 1.4.



1.2 Computational Models

In this section we define FDFD’s; RDFD’s, and PFF-RDFD’s, summarize the definitions of FIFO

Petri Nets and Program Machines, and introduce the overall concept of a Computation System.

1.2.1 FDFD’s and RDFD’s

We will use the formal definitions from [LWBL96] to introduce Formalized Data Flow Diagrams
(FDFD’s). The cited paper contains a more detailed explanation of the underlying operational semantics
of FDFD’s and an extended example.

In all our definitions, we use the notation X for the set X U{L}, where L means no information.

Definition (1.2.1.1): A Formalized Data Flow Diagram (FDFD) is a quintuple
FDFD = (B, FLOWNAMES, TYPES, P, F),

where B 1s a set of bubbles, FLOWNAMES is a set of flows, TYPES 1s a set of types, P 1s the set
{persistent, consumable} and F' = B x FLOWNAMES x TYPES x B x P. The following notational
convention for members from these domains i1s used: b € B, fn € FLOWNAMES,T € TYPES,p €
P, feF. ]

Definition (1.2.1.2): We define the following auxiliary functions for describing the structure of

an FDFD:
Function : Type

Source : F'— B
FlowName : F — FLOWNAMES
TypeOf : F — TYPES
Target: F'— B
Consumable : ' — Boolean
Inputs : B — PowerSet(F)
Outputs : B — PowerSet(F)

TypeMeaning : TYPES — Set

In the previous definition, we think of a type as describing a set of objects. The set of objects

associated with a type T is given by TypeMeaning(T). By Set, we mean the class of all recursive sets.



Definition (1.2.1.3): We define the following domains describing the configuration of an FDFD:

Notation for Members € Name = description

m € MODES = {idle, working}

bm € BubbleMode = B — MODES
0 € OBJECTS = Uperyprs TypeMeaning(T)
s € WhatRead = (F — OBJECTS )
r € Read = B — WhatRead

fs € FlowState = F — OBJECTS”

y=(bm,r fs) €, = BubbleMode x Read x FlowState
We call v = (bm,r, fs) €, a state (or a configuration) of an FDFD. [ ]

Definition (1.2.1.4): Sequences of objects, i. e., elements of (OBJECTS™) |, are treated as FIFO

queues using the following constants and operations:

() : OBJECTS*

Eng : (OBJECTS®), x OBJECTS — (OBJECTS™),
IsEmpty (OBJECTS™), — Boolean |

Head : (OBJECTS*), — OBJECTS,

Rest : (OBJECTS*), — (OBJECTS™),

These operations are defined to satisfy the following equations for all ¢ € OBJECTS* and o €

OBJECTS.

Enq(L,0) = L
IsEmpty(L) = L
IsBmpty(()) = true

IsEmpty(Enq(g,0)) = false
Head(l) = L
Head(()) = L
Head(Eng(g,0)) = if IsEmpty(q) then o else Head(q) fi
Rest(l) = 1
Rest(()) = L
)

Rest(Enq(q,0)) = if IsEmpty(q) then () else Eng(Rest(q),0) fi



The things that the bubbles in an FDFD can do are defined through three curried functions Enabled,

Consume, and Produce defined as follows:

Definition (1.2.1.5): Enablement of a bubble can depend on both the presence of values on

input flows as well as on the values on such flows:
Enabled : B — (FlowState — Boolean | )

A bubble that is enabled can change its mode from «dle to working. It reads some of its inflows, and
consumes some of these. Only consumable flows may be consumed and consumption means removing

the head of the sequence associated with the flow:
Consume : B — ((FlowState x Read) — PowerSet(FlowState X Read)).
A bubble in working mode can produce some output in the transition from working to idle:
Produce : B — ((FlowState x Read) — PowerSet(FlowState X Read)).
The notation [¢ — y]g is an update to a function, g, and it is defined by the following equation.
[ — ylg Nz . if 2 = = then y else ¢g(z) fi

The curried function In(f,b) represents the changes that b makes to the flow state and read function
by reading the flow f, and it is defined as follows:
In : (F' x B) = ((FlowState x Read) — (FlowState x Read))
In(f,0)(fs,r) =
let r, = [f — Head(f5(f))](r(b))
in (if Consumable(f) then [f — Rest(fs(f))]fs else fs fi,
[b— rp]r)
By analogy, the curried function Out(o, f, b) represents the changes that b makes to the flow state and
read function by producing o on the flow f, and it is defined as follows:
Out : (OBJECTS x F x B) — ((FlowState x Read) — (FlowState x Read))
Out(o, f,b)(fs,r) =
let rp, = Af" . L
in (if Consumable(f) then [f — Enq(fs(f), 0)]fs else [f — Enq({), o)]fs fi,

[b— rp]r) u



Two kinds of transitions are allowed between configurations: an enabled bubble can go from idle
to working, and a working bubble can go to idle. We use the symbol — to state the binary relation
between configurations.

The transition rule

bm(b) = idle,
Enabled (b)(fs) = true,
bm' = [b— working]bm,

(fs', ") € Consume(b)(fs, )

(bm, 7, fs) — (bm' ' fs')
states that if b is idle and enabled, then it may change its mode to working and consume some of its
inputs. Finally, if the conditions above the horizontal line hold, then the transition below the line may
take place.

The transition rule

bm (b) = working,
bm' = [b s idle]bm,
(fs',7") € Produce(b)(fs,r)

(bm, 7, fs) — (bm' ' fs')
states that if b is working, then 1t may change its mode to idle and produce some outputs.
We next define what we mean by a Reduced Data Flow Diagram (RDFD). We do not explicitely
state that there are no stores in RDFD’s since stores are considered as an addition to, but not as a part

of the FDFD’s defined in [LWBLY6].

Definition (1.2.1.6): An FDFD that obeys to the following restrictions is called a Reduced Data
Flow Diagram (RDFD):

(i) The set OBJECTS, that contains all types of objects that may appear on flows, is finite.

(i1) The mappings Enabled, Consume, and Produce contain no higher logical constructor than First
Order Predicate Calculus (FOPC) assertions over the values on the inflows and outflows of the

bubble. Each assertion must be computable ([WBL93]).

(iii) The mappings Enabled(b) and Consume(b) do not make use of the positive form of the operation

IsEmpty. Instead, it only occurs with a negation, i. e., = IsEmpty(fs(f)), where f € Inputs(b).

(iv) The mappings Fnabled(b) and Consume(b) only make use of the Head element of a flow f €

Inputs(b). Constructions such as “if Head(Rest(fs(f))) = « then ... fi” are not allowed.



(v) Every flow is initialized, i. e, V f € F : fs;piia(f) € (TypeOf (£))*. Also, bminitiar = Ab . idle

and Tinitial — Ab . /\f L. m

The finiteness of OBJECTS = U TypeMeaning(T) claimed in (i) guarantees that each simple

TeTYPES
primitive type and each structured primitive type only has a fixed number of elements. E. g., we can

enumerate TypeMeaning(INTEGER) = {MININT,...,MAXINT} and assuming that 7' satisfies

this criterion, then
TypeMeaning (Sequence of T) = {s | length(s) < e,Vk <c : s[k] € T}

for some constant c.

By (ii), we can determine the result of each expression for every possible combination of inputs for
this expression. Especially, we can reformulate every expression in the mappings Enabled, Consume,
and Produce as finite many if — then — fi—statements that cover possible combinations of inputs.
However, these statements may be nondeterministic.

Therefore, we can rewrite the mappings Enabled, Consume, and Produce of any RDFD in the fol-
lowing normal form. Later, we will use this normal form to simulate RDFD’s by FIFO Petri Nets. If

not otherwise stated, we use this normal form for all examples throughout this paper.

Definition (1.2.1.7): The normal form of an RDFD (nf-RDFD) is defined as follows:
Brprp = {b1,...,bs}
FLOWNAMES pprp = {f1, ..., fr}
A bubble b; can be never enabled (case Fy below), it can be always enabled (case E1), or it is enabled if

at least one of its m; enabling conditions of its enabling rule yields true (case F3). An enabling condition

L . N . . .

J will yield true if the n;j; consumable inflows f5;, ..., ijni; are not empty, the head elements of these

: c c .. 1 1 P P

inflows are the values ofjy, ..., Ofin i and the data on the n;;» persistent inflows fi;, ..., ijni, ATe
P P . . -

the values 05t Oy An enabling condition may access only consumable flows (then n;;2 = 0),

only persistent flows (then n;;1 = 0), or consumable and persistent flows (then n;;1 > 0 and n;;2 > 0).
Also, f; and ff,, as well as ff;k and fI,  may be identical for some combination of (j, k) and (I, m)
pairs.
Vb, €B :

Enabled (b;) = Afs . false (Eg)

or



Enabled (b;) = Afs . true (E1)
or
Enabled (b;) = Afs . (Es)
(~IsEmpty(fs(F1)) A - A=~IsEmpty(f5(fin,,,)
NHead (fs(ff11)) = ofyy A+ A Head (fs(ff1,,,,)) = 0f1n,,,
Nead(fs(ffy1)) = ofyy A ... A Head (fs(f}1,,,,)) = 0f1n,,,)

V...V

(—IsEmpty(fs(fn 1)) A - A= IsEmpty(fs(fin.,..,))

NHead(fs(ff,,1)) = 05,1 A - A Head (fs(

1yl

C
IMinim, 1

Q

it )
IMinim,1

AHead(fs(ff 1)) zofmll/\.../\Head(fs( P ) =of )

m;l MM im, 2 M N, 2

where Vie {1,...,b} :

mi > 1, ny11, 412, -0 Rimy1s Rimg2 > 0
[ C C C C

Fi _{filla"'a ilngr s o Jamgly - o im,n,mll}
P _ g P P P P

Y ={fh Finn, im,l""’fim,n,mlz}

F; = Ff U F? = Inputs(b;)
V f¢ € Ff . Consumable(f°)
VP e FF : = Consumable(f?)

0f = {Ofll’ R Oz?ln,u’ T Ofmzl’ Y Ofm’n”"’l}
OF = {1+ i1t i)
0; = 0§ UOY

U F; C Frprp
i=1,...,b

U O; C OBJECTS

i=1,...,b
A bubble b; may consume nothing if it is never enabled or always enabled (case C below). Otherwise,

if several of the m; enabling conditions of its enabling rule are true, b; nondeterministically selects one

of these Consume cases, say j, and it consumes from the n;;; consumable inflows f; ¢ and

i1 o Jijnig

the n;;» persistent inflows ffjl, s Jijni

of b; referred to in this Consume case (case C3). This implies
that the head elements of the consumable inflows are removed from their queue. The persistent inflows
are not modified at all.
Vb, €B :

Consume(b;) = A(fs,r) . {(fs,r)} (Ch)

or



Consume(b;) = A(fs,r) . (C2)
Ut —IsEmpty(fs(ff1)) Ao A ~IsEmpty(fs(ffi,,,,)
NHead(fs(f5,)) = o6y, A A Head(fs( [y, )) = 061
NHead (fs(f,)) = ofsy A A Head (fs( ) = oFi.)
then In(fy ) (.. (In( b0 (In(Fhy b (. (In(fh ) (1)) - ))) - )
fi,
if ~LsEmpty(fs (S5 1) A+ . A —ISEmpty(fs(fip . )
NHead (f5(J5y1)) = Oy A -+ A Head (f5(F i ) = O
NHead (fs( 1 1)) = Ofp Ao A Head (fs(fF 0 )= ol )
then In(fe 3, b0) (- (I Fo o0 Iy 0o (T ) (5,7)) 2 ))) )
fi

1

A bubble b; may produce nothing and simply reset its internal status independently from what it has
read (case Py below). It may nondeterministically select one of its s; Produce cases, say j, producing
objects uij1, ..., uijk,,; on its outflows Ay, ..., Ay, (case Py). Otherwise, if it has read some input
that matches one of the m; Consume cases, say j, it nondeterministically selects one of the I;; Produce
subcases, say k, and produces objects w1, . .., Uijkq,,, on its outflows hyjr1, ..., Rijrgs (case Py). We
use the symbol O to indicate that any of the I;; Produce subcases can be selected nondeterministically

if Produce case j has been selected (nondeterministically).

Vb, €B :
Produce(b;) = A(fs,r) . {(fs,[bi = Af . L]r)} (Py)
Produce(b;) = A(fs,r) . (1)
{O0ut(uiny, hirn, bi) (. . (Out(uing,y, hitk,y, bi)(f5,7)) - ),
OUt(Uis,la his,l, bl)( .. (OUt(Uis,k,sl ; his,k”labi)(fsa 7“)) . )}
}
Produce(b;) = A(fs,r) . (F2)

{f r(b:) (1) = 011 AL A r(bi)(ficln,u) = 0§1n,11

/\r(bi)(ffn) = 0511 A A (bi)( zpm,m) = g)m,m
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then OULL(U“H, hilll, bl)( .. (OUt(Uillq,u ; hillquu bl)(fs, 7“)) .. )

o...

O OUt(Uillul, hillula bl)( .. (OUt(uilluqm,l ; hilluqmll ; bl)(fs, 7“)) .. )

lf r(bl)(fzcmll) = Ofm,l AN r(bi)(ficm,n,mll) = Oz?m,n,mll
/\r(bl)( zpmll) = Ofm,l ARERNA r(bi)(ffm,n,m 2) = Ofm,n,m P

then OUt(uimllla him,lla bz)( .- (OUt(uimllq,mluhim,lq,mﬂ ) bl)(fsa 7“)) . )
Oo...

D Out(Wim,t i, 15 Rimiti, 15 00) (- (O (Wimn i, qimin,, s Rimim, qimp,, »0)(f5,7)) )
fi

}
where Vie {1,...,b} :

mi > 1, by oo limg s g, - G, >0

Hi = {hitin, s hitigans - o Rimatim, 15 -+ s Rimtim. qimer,,
Ui = {ui111, -+ Uit1gass o5 Yimilin, 1y - o> Yimalim, qim,1,, |
U H; C Frprp
i=1,...,b
\J ©icoBiECTS
i=1,...,b

We assume Consume(b;) and Produce(b;) are finite enumerable and ordered sets for every b; € B.
Thus, we can access the jth element of Consume(b;) through (Consume(b;)); and the kth element of
Produce(b;) through (Produce(b;))y.

Definition (1.2.1.8): An RDFD that does not have any persistent flows is called a persistent
flow—free Reduced Data Flow Diagram (PFF-RDFD). This implies that F = B x FLOWNAMES x
TYPES x B x {consumable}. [ |
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Definition (1.2.1.9): A firing sequence (computation sequence) of an FDFD is a possibly infinite

sequence (b;, a;,7;) € Bx{C, P} x IN,i > 0, such that, if transition (b;, a;, j;) is fired in state (bm,r, fs),

then
, (Consume(b;));,(fs,r), ifa;=C
(fs', 1) =
(Produce(b;));,(fs,r), ifa;=P
working, ifa; =C
bm!(b;) =
wdle, ifa; =P
bm'(b) = bm(b) Vbe B — {b;}
and

(bm,r, fs) — (bm' v, fs').
We introduce the notation (bm,r, fs)[(b, a, j)] to indicate that transition (b,a,j) is fireable in state
(bm,r, fs) and (bm,r, fs)[(b,a, j)](bm' ', fs') to indicate that state (bm’ r’,fs') is reached upon the
firing of transition (b, a, j) in state (bm,r, fs).

By induction, we extend this notation for firing sequences:

(mea rOafSO)[(bla alajl)a s (bn—la an—lajn—l)a (bna anajn)]

is used to indicate that transition (by, an, jn) is fireable in state (bmy,_1,rn_1, fs,_1), given that

(mea rOafso)[(bla alajl)a ey (bn—la an—lajn—l)](bmn—la rn—lafsn—l)

holds. By analogy, we use

(mea rOafSO)[(bla alajl)a ey (bna anajn)](bmna rnafsn)

to indicate that state (bmy, 7y, fs,,) is reached upon the firing of the sequence (b1, ay, j1), ..., (bn, @n, jn)-
|

Definition (1.2.1.10): The set of firing sequences (set of computation sequences, language) of

an FDFD, denoted by FS(FDF D, ¥initial), is the set containing all firing sequences that are possible

for this FDFD, given Yinstiat = (0Minitiai, Tinitials fSiniviar) = (bmo, ro, f5g), 1. €.,
FS(FDFD,’)/MZ'”'G[) = {8 | s € (B X {C,P} X W)* A %'nitial[s]}' u
Definition (1.2.1.11): The Reachability Set of an FDFD, denoted by RS(FDF D, Yinitial), 18
the set of states v = (bm, r, fs) that are reachable from Yinitiat = (bMinitials Tinitial, FSinitial)s 1+ €

RS(FDFD,%initiat) ={y | Y€, A 3Ts € FS(FDFD, Yinitiat) : YVinitiat[5)7}- u
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1.2.2 FIFO Petri Nets

In some sense, FIFO Petri Nets (introduced in [MM81]) are Petri Nets where places contain words
instead of tokens and arcs are labelled by words. More formally, we make use of the definition of FIFO

Petri Nets as given in [Rou87].

Definition (1.2.2.1): A FIFO Petri Netis a quintuple FPN = (P, T, B, F, ()) where P is a finite
set of places (also called queues), T is a finite set of transitions (disjoint from P), @ is a finite queue
alphabet, and F : Tx P =5 @Q* and B : P xT — * are two mappings called respectively forward and

backward incidence mappings. [ |

Definition (1.2.2.2): A marking M of a FIFO Petri Net is a mapping M : P — @Q*.

A transition ¢ is fireable in M, written M (t >, if Yp € P : B(p,t) < M(p) (where u < x means u is
a prefix of z).

For a marking M, we define the firing of a transition ¢, written M (¢ > M’, if M (¢ > and the following
equation between words holds Vp € P : B(p,t)M'(p) = M (p)F (¢, p). That means, the firing of a tran-

sition ¢ removes B(p,t) from the head of M (p) and appends F (¢, p) to the end of the resulting word. ®

Definition (1.2.2.3): A FIFO Petri Net F'PN together with an initial marking My : P — Q*
is called a marked FIFO Petri Net and is denoted by (FPN, My).

As usual, the firing of a transition can be extended to the firing of a sequence of transitions. We
denote by F.S(F PN, M) the set of firing sequences of this FIFO Petri Net. The firing of a sequence u
of transitions from a marking M to a marking M’ is written as M (u > M’.

The set of markings that are reachable from My 1s called Reachability Set and it is denoted by

Ace(FPN, My). [ ]

1.2.3 Program Machines

We introduce Program Machines as given in [Min67], using the formalism of [VVN81].

Definition (1.2.3.1): A Program Machine is given by a finite set R = {rq,..., 7} of registers, a
finite set @ = {qo, ..., ¢} of labels, and a finite set I of instructions. Each instruction is labelled by an

element of @ and no two instructions have the same label. A Program Machine has exactly one “start
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instruction”

qo : start goto q¢i;

and exactly one “halt instruction”

qf : halt.

The other instructions are of the type “increment register r;”
qgs : ri:=1; + 1 goto qn;
or “test and decrement register r;”
qs : if 7; = 0 then goto ¢; else r; := r; — 1 goto q¢,.

The registers have nonnegative integers as values. First the start instruction is executed. Then the flow
of control is determined by the goto contained in each instruction, until the halt instruction is reached.
|

Definition (1.2.3.2): A compulation sequence of a Program Machine is a possibly infinite

sequence
QOa(k%a"'akzl)aql)a(k%a"'akgaqiz)a"'a(k}a"'ak‘zj)aqij)a"'a(kyl'a"'akfaqir)

with ¢;. = gy, 1. e., the halt statement is reached. ¢;; is the actual instruction to be executed in step j
and kj 1s the content of register r; just before the execution of instruction ¢;; in step j. In computations,
arbitrary initial values (k1, ..., k]) € IN? are allowed. Note that computations may be of infinite length.

1.2.4 Computation Systems and Homomorphisms

Now we will introduce the overall concept of a Computation System. All the definitions and results
in this subsection are drawn from [KM82]. However, there exist similar approaches in the literature,
e. g., in [Jen80], where the terms “transition system”, “simulation”, and “consistent homomorphism”
have been defined with respect to a formal method that allows comparisons of the descriptive power of
different types of Petri Nets.

For any set X, we denote by X* the set of finite sequences of elements of X including the null sequence
A. The set of infinite sequences of elements of X 1s denoted by X and we define X% = X U X*.

Definition (1.2.4.1): A computation system S = (X, D,z, ) consists of a set D, an element z

49

of D, a finite set X of operations, and a function 7 from ¥ to the set of partial functions from D to
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D. That 1s, for each a € X, @ 1s a partial function from D to D. The function “ 7 is extended to ©*

by X= identity, aB(y) = @ - Bly) = B@(y), o - B € ",y € D. "

Here D is intuitively thought of as the set of states (or configurations) of the computation system,
where a state includes control information as well as data for synchronization. The element x is then
considered to be the initial state of the system. The performance of an operation will create a new
state, as defined by the function _, and a sequence of operation performances can be thought of as a
computation (or firing) sequence of the system.

Definition (1.2.4.2): Let S = (%, D, x,_) be a computation system. Let y,z € D, and o € X*.

We define:
a(y) =L, if@(y) is undefined

a(y) #L, ifa(y) is defined

y— 2, ifaly) ==
y—z, ifdaeX* iy-z [ |
Definition (1.2.4.3): Let S = (E,D,x,_) be a computation system. For each y € D, a
computation sequence from y is a (finite or infinite) sequence ajas... of elements of ¥ such that
Vi @ @ias - -ai(y) #L. We denote by C¥¢(y) the set of all computation sequences from y and by
Cs(y) ={a | a € Z*,a(y) #L} the set of all finite computation sequences from y. For each y € D,
we denote by Rg(y) = {@(y) | o« € ¥*,a(y) #L} the reachability set from y. When y = x, we simply

write Rg, Cg, and C¥ instead of Rg(z), Cs(x), and C¥ (), respectively. [ ]

Note that for an & € X%, a is in C¥(y) if, and only if, every prefix of o is in Cg(y).
The following definitions give some ideas about possible relations between different computation

systems.

—1 —2
Definition (1.2.4.4): Let S; = (X1, Dy,21, ) and Sz = (X3, Da, 23, ) be computation
systems. A homomorphism h = (7,p) : S; — Sa consists of a homomorphism 7 : £7 — X%, and an

injection p : D1 — Dy which satisfies the following conditions:
pler) = a9 (1.2.4.4.1)

Vy 2 € Rs,VaeXT : (y—=z = ply) e p(2)) (1.2.4.4.2)
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e A homomorphism is said to be injective if T : X7 — X5 is injective.
e A homomorphism is said to be surjective if the following conditions hold:
Vy,z ERs, VB ESS : (ply) 2= plz) = Ja X : (B=r(a) Ay—32)  (1.24.43)
Yye Rs, V2 €Dy : (ply) =2 = 32 € Rs, : 2" = p(2)) (1.2.4.4.4)

e A homomorphism is said to be bijective if it is surjective and injective. u

The injection p relates elements of Dy to elements of Dy, where condition (1.2.4.4.1) states that the
starting state of S} maps into the starting state of Sa. By condition (1.2.4.4.2), if a is any computation
sequence in Sy then there is a related computation sequence 7(«) in Sa, with appropriate state map-
pings using p. Condition (1.2.4.4.3) means that any computation from p(y) to p(z) in Sz is the image
of a computation from y to z in S;. Condition (1.2.4.4.4) means that any computation from p(y) in Ss
is an initial segment of the image of some computation from y in 5.

Definition (1.2.4.5): Let S = (X, D, x,_) be a computation system. Let a, 8 € ¥*. We write
a ~ fif « is a permutation of 3. Let h = (r,p) : S; = Sz be a homomorphism. h is said to be

spanning 1f the following conditions hold:

Vy,z€ Rs, VG EX] 1 (ply) i>p(z) = Jae¥ : fT(a) Ay —z) (1.2.4.5.1)
ke NVy € Rs, Yy € DVBESS : (p(y) 5y = Jaexidze DI/ €D AP, 5" €5
p(y) (e p(2) LN Y LI ()8 ~ B8 AN | B |< k) (1.2.4.5.2)

(z s win S1) = v € D3y 4 ex; NN p(u) Tl A r(v)y" ~p"y  (1.24.5.3)

|

Condition (1.2.4.5.2) means that any computation § from p(y) of Sy is a prefix of a permutation of

a computation of the form 7(a)8"”, o € T1,| " |< k. If oy is a computation from y of Sy, then there
must be a computation of the form 83’y such that r(a)7(y) is a prefix of a permutation of 35'y’.
Intuitively, 4 is an initial segment of a simulation of 7(«), and if @y is a computation of Sy, then 2 can

be followed by a computation to simulate 7(7).

Theorem (1.2.4.6): Every surjective homomorphism is a spanning homomorphism.



16

Definition (1.2.4.7): Let A = (7,p) : S1 = S3 be a homomorphism. h is said to be length

preservingif Va € Xy : | r(a) |= 1. [ |

Definition (1.2.4.8): Let ¥ be a finite set. For each w € ¥*, let ¢(w) be the subset of ¥ defined
by «(w) ={a | aaff = w, o, € X" a € X}.
Let h = (r,p) : S1 — Sa2 be a surjective homomorphism. & is said to be principal if for each a and

bin Xy, either 7(a) = 7(b) or ¢(7(a)) N e(7(b)) = @, and @ # b implies ¢(7(a)) N o(7(b)) = . [ |

Theorem (1.2.4.9): Let h = (7,p) : S1 — S2 be a bijective homomorphism. For each y, 2z € Rg,
and o € X7 it holds that

y — z if, and only if, p(y) T(—a; p(2). (1.2.4.9.1)

Definition (1.2.4.10): Let h = (7,p) : S1 = S2 be a homomorphism. h is called an isomorphism
if there is a homomorphism &' = (7', p') : S3 — 51 such that hh' : S; — 53 and A'h : S} — S are

identities, i.e., 77" : X5 - X5 71 X1 =5 X% pp’ : Dy — Do, and p'p : Dy — D are identities. H

—1 —2
Theorem (1.2.4.11): Let Sy = (Z1,D1,21, ) and S; = (X3, Da, 22, ) be computation
systems. Let 7 : ¥7 = X3 be a homomorphism and p : Dy — D3 be a function. Then h = (7, p) is an

isomorphism from Sy to S if, and only if, 7 and p are bijective and satisfy conditions (1.2.4.4.1) and
(1.2.4.9.1).

Definition (1.2.4.12): A computation system S = (X, D, x,_) is said to be reduced if D = Ryg.
For each computation system S = (X, D, #, _), the computation system S = (2, Rs, x, _) is called the
reduced form of S, where for each a € ¥, the partial function @ in S is the restriction @ | Rs of a € 5.

|

Theorem (1.2.4.13): Let S; and Sy be reduced computation systems. Let h = (7, p) : S; — S5

be a homomorphism. A is an isomorphism if, and only if, & is length preserving and bijective.

1.3 Equivalence of PFF-RDFD’s and Turing Machines

In this section, we will show that PFF-RDFD’s and Turing Machines are equivalent with respect to

their computational power. Since we know that Turing Machines, Program Machines, and FIFO Petri
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Nets are equivalent ([Min67], [FM82], and [MF85], respectively), it is sufficient to show that we can
simulate each RDFD, and hence each PFF-RDFD, by a FIFO Petri Net and each Program Machine
by a PFF-RDFD. Actually, the first simulation could be omitted and instead, we could simply invoke
Church’s Thesis to deduce that PFF-RDFD’s have at most the computational power of Turing Machines
(and thus of FIFO Petri Nets). However, we will show a little bit more than only the existence of a
simulation, but also that the simulation of RDFD’s (and thus of PFF-RDFD’s) by FIFO Petri Nets is
based on an isomorphism. For the other direction, a PFF-RDFD is sufficient to simulate a Program
Machine.

Now, we will formally state our main result of this paper. The proof follows by the above and

Theorems (1.3.1.1) and (1.3.2.1).

Theorem (1.3.1): PFF-RDFD’s and Turing Machines have the same computational power.

1.3.1 Simulation of RDFD’s by FIFO Petri Nets

Theorem (1.3.1.1): Every RDFD can be simulated by a FIFO Petri Net with respect to an
isomorphism h.
Proof: Without loss of generality, we assume that our RDFD is given as a nf-RDFD (Brprp,
FLOWNAMES rprp, TYPESkrpFD, PrDFD, FRDFD) With mappings Enabled, Consume, and Produce

and with initial values (bminitials Finitials fSiniviar)- We consider the computation system

—RDFD
Srprp = ((Brprp,{C, P}, IN), (bm, v, fs), (bmsnitial, Tinitial, fSinivial)s )

We now construct a marked FIFO Petri Net FPN = ((Prpwn,Trpn, Brpn, Fren, @ren), Mo ppn)

as follows:

For each flow in the RDFD we generate a place in the FIFO Petri Net. For an easier reference we
assume that Vi = 1,...,f, fi € FLOWNAMES pprp : FlowName(f;) = f;. For each bubble in the
RDFD we require additional places in the FIFO Petri Net to store the bubble’s working mode and
the values that have been read. Whenever we refer to type Cy,Cs, Py, P, and P>, we mean that the
Consume or Produce case is in the related normal form, introduced in Definition (1.2.1.7).
Prpy ={f1,..., ft}
U{b1 idte, - -, Db sdte }

U U ({bz’,workmgzl | Consume(b;) is of type Cy}
i€{1,..,b}
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U{bi,workingzla B bi,working:m, Consume(bi) is of type CZa
m; = (# of cases in Consume(bi))})

For each case (subcase) in the mappings Consume and Produce, we generate a transition in the FIFO

Petri Net.
TrpN = U ({Cn | Consume(b;) is of type C1}
1€{1,...,b}
Udcit, - -+, Cim, | Consume(b;) is of type Ca, m; = (3 of cases in Consume(b;))}
U{pi1, - - -, Dis, | Produce(b;) is of type P1, s; = (# of cases in Produce(b;))}

U{Pitts s Pillns - s Pimily -« Pimilen, | Produce(b;) is of type Pa,
m; = (# of cases in Produce(b;)), l;; = (# of subcases in case j in Produce(bi))})
For each b; € Brprp, define the mappings Brppy and Frpy in accordance with the mappings Consume

and Produce.

If Consume(b;) is of type C1, then upon firing of transition ¢;; the idle token I is removed from place

b; iare and the working token W is queued at place b; working:1. We define:

B(biidie,ci1) = 1

F(Cilabi,workingzl) = W

If Consume(b;) is of type C, then upon firing of transition ¢;; the idle token I is removed from place

C C C
1 Oijny, are removed from the places f;

. .
b; iate, the tokens o ITERERE fijmj1 representing consumable

» » D : :
flows, the tokens o Oijnij, AT€ removed from the places f;,..., ijni;, Tepresenting persistent

il

flows, the working token W is queued at place b; working;; and the tokens of are queued at

p
ij1 e Oijnggs

P

places fi, ..., ijn.;, Tepresenting persistent flows. We define:

B(biidie,ci1) = 1
B(biigie, ¢im;) = 1
B(ffi1,cin) = ofyy

B(ficln,uacil) = Oiin;y
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B(ffiien) = oy
B( f’lnm,cﬂ) = Ofln,m
B(ffm,lacim,) = Ofm,l
B( z’cm,n,mll’cimz) = Oz?m,n,mll
B( zpmll’cimz) = Ofm,l
B( fmlnlle,Cim,) = Ofmm,mlz

F(ein, biworking1) = W
F(Cimi, biworkingm;) = W
Flein, fii) = o
F(Cil’fzplnlm) = Ofln,m
Fleim, zpmll) = Ofm,l
F(Cimm zpm,n,mﬂ) = Ofm,n,mlz

If Produce(b;) is of type Pp, then upon firing of transition p;; the working token W is removed from
place b; working:j, the idle token I is queued at place by ;4, and the tokens w1, ..., usx,; are queued

at places hyj1,. .., hijx,;. We define:

B(bi,workingzlapil) = W

B(bi,workingzlapib’z) = W
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F(pi1, biiae)

F(pis;, bisate)

F(ps1, hi11)

F(pi1, hitk,,)

F(pis,a his,l)

Fpis,, hisb...)

U1l

U1k,

Uis,1

Uis ks,

If Produce(b;) is of type P», then upon firing of transition p;;x the working token W is removed from

place b; working.j, the idle token I is queued at place b; ;qie, and the tokens uijk1, ..., Uijkg,,, are queued

at places hijk1,. .., hijrq - Also, if place hyj represents a persistent flow, any value that is currently

queued at this place will be removed upon firing of this transition. We define:

B(b; working:1,pi1n) = W
B(bi working1, Pitly) = W
B(biworkingm,> Pim1) = W
B(bi workingm,s Pimidim,) = W
F(pi, biiae) = 1
F(piugy, biiae) = 1

F(pim1,biiae) = 1



F(Pimitim, b idic)

F(pi11, hitn)

F(pit1, hit1ga,)

F(pittiy, hivign)

F(pitta, hittago, )

F(pim,1, him,11)

F(pimll, himzlqzmll)

F(pim,tin, > Mimtim, 1)

o, )

itimy

F(Pimim, s himim, gim

B(hii11, pinn)

B(hit1g,1,, Pi11)

B(himtim 15 Pimitim, )

B(him,l,ml Qimylyp,. pimzlzml )

If nothing is produced for a particular combination of reads (case Py), only the equations that involve

b; working and b; ;g1 are defined in that case.
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Ui111

Uil11g11

U1l 1

Willirqine

Uim,11

Wim i1 qim,1

uim,l,mll

Wimilim, Gimgt;,,

z

any, if ~Consumable(h;111)

any, if =Consumable(hii14,,,)
any,

if = Consumable(himlllml 1)

any, if =Consumable(him,1,,, gin

z

1

img

)
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The queue alphabet of the FIFO Petri Net is defined as follows:

Qrpy = OBJECTSgprp U {I, W}

The initial marking My Fppy is such that:

Mo ppn(biae) =1
Mo rpn (bi workingj) =<>
Mo ren(f) = fs(f;)

Then, the computation system Srpy = (Trpn, Mren, Mo, Few,

Net FPN. Consider the homomorphism h = (7, p)

Vie{l,...,b)

Vie{l,...,b}vVje{l,....m;}

Vie{l,....f}, f; € Frorp
—_FPN

) is realized by the FIFO Petri

: Srprp — Srpn Wwhere the homomorphism

7 : (Brprp,{C, P}, IN)* = Tfpy and the injection p : (bm,r, fs) = Mppy are defined as follows:

Cin,

T((bi,a,n)) — Pin,

Pinoni

p(bm 1, fs) is such that Vi e {1,...

I
Mrpn (biiae) =
<>,
<>,
Mppn (bi working;) = w,
<>,

and Vjie{l,...,f}, f; € Frorp

ifa=C

if @ = P and Produce(b;) is of type P,
ng—1

if @ = P, Produce(b;) is of type P2, and n = Z Lij +m
j=1

if bm(b;) = idle

if bm(b;) = working

if bm(b;) = idle

it bm(b;) = working, (Consume(b;)); has been executed

if bm(b;) = working, 3k, k # j : (Consume(b;))r has been executed

Mppn (f;) = fs(f5).

Obviously, 7 and p are bijective. Also, h satisfies (1.2.4.4.1) and (1.2.4.9.1). Hence, h is an isomorphism

by Theorem (1.2.4.11).

According to the Definitions and Theorems from [KM82], here summarized in Subsection 1.2.4, the

isomorphism h constructed in the previous proof is also a bijective (hence injective, surjective, hence
spanning), length preserving, and principal homomorphism.

Example (1.3.1.2): We will provide a small example how to construct a FIFO Petri Net for a
given nf-RDFD. Our nf-RDFD only consists of three bubbles A, B, and C, two consumable flows f

and out, and two persistent flows g and h (see Figure 1.1). Bubble A only produces combinations of X
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on flow fand 0 on flow gor Y on flow fand 1 on flow g. Bubble B can forward any value on flow A if
it reads a 1 on flow ¢. It must forward the same value if it reads a 0 on flow g. Therefore, bubble C
can read all possible combinations X/0, X/1, Y/0, and Y/1 on its flows f and h. Initially, flows ¢ and

h both contain a 0. All other flows are empty.

Figure 1.1: nf~-RDFD.

The mappings Enabled, Consume, and Produce for the nf-RDFD shown in Figure 1.1 are specified as
follows:
Enabled(A) = Afs . true
Enabled(B) = Afs .
Head(f5(g)) = 0V Head (f5(g)) = 1
Enabled (C) = Afs .
(~IsEmpty(f) A Head(fs(f)) = X A Head(fs(h)) = 0)
0
0)
0

V(= IsEmpty(f) A Head(fs(f)) = X A Head(fs(h))

( (
V(= IsEmpty(f) A Head(fs(f)) =Y A Head(fs(h))
V(= IsEmpty(f) A Head(fs(f)) =Y A Head(fs(h))

Consume(A) (fs,r) A(fs,7)}
(fs,7) -

{if Head(fs(g)) =0

= Afs,r
=A(fs,r

Consume(B)

then In(g, B)(fs,r)
fi

bl

if Head(fs(g)) =1
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then In(g, B)(fs, )
fi
}
Consume(C) = A\(fs,7) .
{if Head(fs(f)) = X A Head(fs(h)) =0
then In(f,C)(In(h,C)(fs,r))
fi,
if Head(fs(f)) = X A Head(fs(h)) = 1
then In(f,C)(In(h,C)(fs,r))
fi,
if Head(fs(f)) = Y A Head(fs(h)) = 0
then In(f,C)(In(h,C)(fs,r))
fi,
if Head(fs(f)) = Y A Head(fs(h)) = 1
then In(f,C)(In(h,C)(fs,r))
fi
}

Produce(A) = A(fs,7) .
{Out(X, f, A)(Out(0, g, A)(fs, 7)),
Out(Y, f, A)(Out(1, g, A)(fs, 7))}
}
Produce(B) = A(fs,r) .
{if r(B)(g) =0
then Out(0, h, B)(fs,r)
fi,
if r(B)(g) =1
then Out(0, h, B)(fs,r)
OO0ut(1, h, B)(fs,r)
fi

}
Produce(C) = A(fs,r) .
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{Hfr(C) ) =X Ar(C)(R)=0
then Out(X0, out,C)(fs,r)
fi,
if r(C)(f) = X Ar(C)(h) =1
then Out(X1, out,C)(fs,r)
fi,
ifr(CYf) =Y Ar(C)h) =0
then Out (Y0, out, C)(fs,r)
fi,
if r(C)(f) =Y Ar(C)(h) =1
then Out(Y'1, out,C)(fs,r)
fi
}
According to Theorem (1.3.1.1), the given nf-RDFD transforms into the following marked FIFO Petri
Net FPN = ((Prpn,Trpn, Brpn, Fren, Qrpn), Mo ppN):
Pepn = {f,9,h,out} U{A;, Ay.1, Bi, By, Buw:2, Ci, Cwo1, Cun, Cu, Crpea }
Trpy = {Ca1,Cp1,Cp2,Cc1,Cca2, Ces, Coa}
U{Pa1, Paz, Ppi1, P21, Ppa2, Peu1, Poar, Posy, Poar}
The initial marking My Fppy is such that:
i) = Mo rpn(Bi) = My rpn (Ci) =1
Mo rpn(Buw1) = Mo ppn(Buw:2) =<>
Mo rpn(Cuwin) = Mo ppn (Bw:s) = My ppn (Buwa) =<>

Mo rpN
Mo rpn(Awi) =
Mo rpn(Cuwa) =

Mo rpn(g) =0

(A

(

(

Mo rpn(f) =<>
(

Mo rpn(R) =
Mo rpn(out) =
Brpn, Frpn, and Qppy can be gained from Figure 1.2. In this figure, we use a double arrow to indicate
that the forward and backward incidence mappings for a particular place/transition combination are
identical, i. e., B(g,Cp1) = F(Cp1,g) = 0. This means, that transition Cp; (if fired) removes the head

element (i. e., 0) of place g and appends the same element to this place. Obviously, place ¢ always

contains only one element since it represents a persistent flow of the nf-RDFD. ]
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Figure 1.2: FIFO Petri Net.

1.3.2 Simulation of Program Machines by PFF-RDFD’s

Theorem (1.3.2.1): Every Program Machine can be simulated by an PFF-RDFD.

Proof: Assume we have a Program Machine with registers R = {r1,...,7,}, labels Q = {qo0, ..., ¢}
and instructions I. We will partially follow the proof of how to simulate a Program Machine by a FIFO
Petri Net (given in [FM82] and [MF85]) when we indicate how to simulate a Program Machine by a
PFF-RDFD.

We define our PFF-RDFD RDF Dpypy, given in the normal form of Definition (1.2.1.7), as follows:
RDFDpy = (Brprp, FLOWNAMESgrprp, TYPESrpFD, PROFD, FRDFD),

where

Brprp =1{q0,.. ., q-yU{rs, ..., 1p}
FLOWNAMES gprp = {do_qo,do_go_q1}

U U {do_gs_qm | instruction labeled ¢ is an increment instruction }
sel

U U {do_gs_qm,do_qs_q; | instruction labeled ¢, is a test and decrement instruction }
sel

U U{i_qs ri,0ri_qs | instruction labeled ¢, accesses register r;}
sel
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U U {next;, act;, val; }

i=1,...,r

TYPESrprp = ENAB UACTION U RESULT UFROM U YES UBIT
where ENAB = {start, go}, ACTION = {add, sub}, RESULT = {done, iszero},
FROM ={1,...,r}, YES = {yes}, and BIT = {0, 1}

Prprp = {consumable}

Frprp = {(g0, do_go, ENAB, qq, consumable), (g0, do_qo-q1, ENAB, ¢1, consumable) }
U{(¢s, d0-¢sqm, ENAB, ¢y, consumable) |V FLOWNAMES do_qs_qm }
U{(gs,i-gsri, ACTION, r;, consumable) |V FLOWNAMES i_qs_r; }
U{(rs, 0-ri—qs, RESULT, ¢, consumable) | Y FLOWNAMES o_r;_q, }

U U {(7;, next;, FROM, r;, consumable),

i=1,...,r

(ri, act;, YES, r;, consumable),

(ri, val;, BIT, r;, consumable)}
We use a unary representation for nonnegative integers which are the only possible contents of the
registers of the simulated Program Machine. The value 0 stands for 0 and the sequence of values

(1,...,1,0) represents n. Initially, the values on the flows are start on do_gy and the unary representation

n
of the initial contents of the registers r1,...,r,, i. e., the values k{,...,k}, on the flows valy,. .., val,,
respectively. All other flows are empty.
The mapping Enabled is defined as follows:

If the bubble represents the start instruction (see Figure 1.3):

do_qq do_qo-q1

Figure 1.3: Bubble ¢q.

Enabled(qo) = Afs . (- IsEmpty(do_qo) A Head(fs(do_qo)) = start)
If the instruction labeled ¢, 1s an increment instruction accessing register r; and its corresponding
bubble has inflows do_¢m, ¢s, ..., do_qm, -qs, 0-ri-qs (see Figure 1.4):

Enabled(qs) = Afs .
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Ti

i1 0T (s

do_gm, s ot
s do_gs-qm

dO—‘]ms s

Figure 1.4: Bubble ¢, for Increment Instruction.

(—IsEmpty(do-gm,-qs) A Head (fs(do-gm, 45)) = go)
V...V

(—IsEmpty(do-gm,-qs) A Head (fs(do-gm,-gs)) = go)
V(= IsEmpty(o-r;_qs) A Head(fs(o-r;gs)) = done)

If the instruction labeled ¢, is a test and decrement instruction accessing register r; and its corresponding

bubble has inflows do_¢m, ¢s, ..., do_qm, -qs, 0-ri-qs (see Figure 1.5):

r;
i—QS - O-Ti_(qs
do_qm, —qs S do_qs _qm
qs
dO—‘]ms s do_qs_q

Figure 1.5: Bubble ¢; for Test and Decrement Instruction.

Enabled(qs) = Afs .
(=IsEmpty(do-gm, 4s) N Head(fs(do-gm, -qs)) = go)
V...V
(mIsEmpty(do_gm,-qs) A Head (fs(do_qm,-q5)) = go)
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V(= IsEmpty(o-r;_qs) A Head(fs(o-r;gs)) = done)
V(= IsEmpty(o-r;qs) A Head(fs(o_r;_qs)) = iszero)
If the instruction labeled ¢, is the halt instruction, i. e., ¢, = ¢y, and its corresponding bubble has

inflows do_qyn, gy, ..., doqm, q; (see Figure 1.6):
do_qm, -5

dO—me —qf

Figure 1.6: Bubble ¢;.

Enabled(qz) = Afs . false
If the bubble representing register r; has inflows i_qs, 1, ..., i_qs,r;, next;, act;, val; (see Figure 1.7):
Enabled (r;) = Afs .
[These lines are required for add:]
(= IsEmpty(i_qs, -ri) A Head(fs(i_qs,-r;)) = add)
V...V
(=IsEmpty(i_qs,-r;) A Head(fs(i_qs, 1)) = add)
[These lines are required for sub:]
V(= IsEmpty(i_qs, i) A Head (fs(i_qs, -r;)) = sub
A= IsEmpty(val;) A Head(fs(val;)) = 0)
V...V
(=IsEmpty(i_qs,-r;) A Head(fs(i_qs,-r;)) = sub
A= IsEmpty(val;) A Head(fs(val;)) = 0)
V(= IsEmpty(i_qs, i) A Head (fs(i_qs, -r;)) = sub
A= IsEmpty(val;) A Head(fs(val;)) = 1)
V...V
(=IsEmpty(i_qs,-r;) A Head(fs(i_qs,-r;)) = sub
A= IsEmpty(val;) A Head(fs(val;)) = 1)
[This line is required to copy the tail of 1’s:]
V(= IsEmpty(act;) A Head(fs(act;)) = yes
A= IsEmpty(val;) A Head(fs(val;)) = 1)

[These lines are required to activate the next instruction:]
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V(= IsEmpty(act;) A Head(fs(act;)) = yes

A= IsEmpty(val;) A Head(fs(val;)) =0

A= IsEmpty(next;) A Head(fs(next;)) = s1)
V...V
(=IsEmpty(act;) A Head (fs(act;)) = yes

A= IsEmpty(val;) A Head(fs(val;)) =0

A-IsEmpty(next;) A Head(fs(next;)) = s;)

(s, T

O-Tj (s,

g5, T

O-T;(qs,;

Figure 1.7: Bubble 7;.

As usual, we assume that whenever a set of input conditions on flows enables a bubble, all the head
elements on these flows will be consumed when this bubble actually goes from «dle to working. Therefore,
we omit to list the mapping Consume. We immediately continue with Produce.
If the bubble represents the start instruction (see Figure 1.3):
Produce(qo) = A(fs, r) .
{if 7(q0)(do_qo) = start
then Out(go, do_qo-q1, q0)(fs,7)
fi
}
If the instruction labeled ¢, 1s an increment instruction accessing register r; and its corresponding

bubble has inflows do_¢m, ¢s, ..., do_qm, -qs, 0-ri-qs and outflows do_gs_qm, i-qs_r; (see Figure 1.4):
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Produce(qs) = A(fs,r) .
{f r(gs)(do—gm, -g5) = go
then Out(add,i_qs_ri, q5)(fs,r)
fi

if 7(¢;)(do_gm,—¢qs) = go
then Out(add,i_qs_ri, q5)(fs,r)
fi

if 7(qs)(0-ri_qs) = done
then Out(go,do_qs_qm,qs)(fs,7)
fi

1

If the instruction labeled ¢, is a test and decrement instruction accessing register r; and its corresponding
bubble has inflows do_gm, ¢s, ..., do_gm,-qs, 0-r;qs and outflows do_q;_qm, do_qs_qi, i_qs_r; (see Figure
1.5):
Produce(qs) = A(fs,r) .
{if r(g5)(do—gm, ¢5) = go
then Out(sub,i_qsr;, q5)(fs, )
fi

if r(g¢;)(do_gm, -¢5) = go
then Out(sub,i_qsr;, q5)(fs, )
fi

if 7(qs)(0-ri_qs) = done
then Out(go, do_qs_qm, qs)(fs,r)
fi

if r(qs)(ori_qs) = iszero
then Out(go,do_qs_qi,q5)(fs, )
fi
}
The next line is given only for formal reasons, but it will never be executed since the corresponding

enabling condition is always false. If the instruction labeled ¢ is the halt instruction, i. e., ¢, = ¢y,
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and its corresponding bubble has inflows do_gm, gy, ..., dogm,qs (see Figure 1.6):
Produce(a7) = Mfs, ) {5 lay = Af . 1))
If the bubble representing register r; has inflows i_qs, 7r;, ..., i_gs, -7, next;, act;, val; and outflows
O sy ..., 015 qs,, next;, act;, val; (see Figure 1.7):
Produce(r;) = A(fs,r) .
[These lines are required for add:]
{f r(r) (iogqs, i) = add
then Out(sy, next;, r;)(Out(yes, act;, ;) (Out(1, val;, v;)(fs, 7))

fi

if r(r;)(i_qs,r;) = add
then Out(s;, next;, r;)(Out(yes, act;, ;) (Out(1, valy, v;)(fs, r)))
fi

bl

[These lines are required for sub:]
if r(r;)(ieqs, ;) = sub Ar(rs)(val;) =0
then Out(0, val;, r;)(Out(iszero, o0ri_qs,, 1) (fs, 7))
fi

if r(r;)(ieqs, ) = sub Ar(r)(val;) =0

then Out(0, val;, r;)(Out(iszero, ori_qs,, ;) (fs, 7))
fi,
if r(r;)(ieqs, i) = sub Ar(r;)(val;) =1

then Out(sy, next;, r;)(Out(yes, acty, r;)(fs, 7))
fi

if r(r;)(ieqs, ) = sub A r(r)(val;) =1
then Out(s;, next;, r;)(Out(yes, act;, ;) (fs, 7))
fi,
[This line is required to copy the tail of 1’s:]
if r(r;)(act;) = yes Ar(r;)(val;) =1
then Out(yes, act;,r;)(Out(1, val;, ;) (fs, 7))
fi

bl
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[These lines are required to activate the next instruction:]
if r(r;)(act;) = yes A r(ri)(val;) = 0 A r(r;) (next;) = s1
then Out(0, val;, r;)(Out(done, or;i_qs,,7;)(fs, 7))
fi

if r(r;)(act;) = yes A r(ri)(val;) = 0 A r(r;)(next;) = s
then Out(0, val;, r;)(done, Out(o-ri_qs,, ;) (fs, 7))
fi

} =

Example (1.3.2.2): Consider a Program Machine that initially has some nonnegative values in
its registers r1 and r, while r3 contains 0. The following code stores the sum of r1 and 75 in r3 and
erases the original values:

qo : start goto qq;
q1 : if r; = 0 then goto g3 else r; :=r; — 1 goto ¢s;
g2 @ r3:=r3+ 1 goto ¢1;
gz : if ro = 0 then goto ¢; else ry := ry — 1 goto g¢a;
qq @ T3 : =713+ 1 goto ¢s;
qs : halt.
The graphical representation of the equivalent PFF-RDFD is given in Figure 1.8.
Based on this diagram, the formal definitions can be gained according to Theorem (1.3.2.1) as:
Brprp = 190,91,92, 43, 94, 4 U {71, 72, 73}
FLOWNAMES gprp = {do_qo, do_qo_q1}
U{do-g2-q1,do-qa-q3}
U{do-q1-g3, do-q1-q2, do-q3-q¢,do_g3-qa }
U{i-q1-71,0-71-q1,1-2-73,0-T342,1-43-T2, 0-T2 43,1473, 0T34 }
U{nexty, acty, valy, nexts, acty, vals, nexts, acts, vals}
TYPESgprp (with FROM = {1,2,3,4}), Prprp, and Frprp follow immediately.
Assume we want to add 2 and 3, then the initial values, 1. e., sequences of values, on the flows are

do_qy = start, val; = (1,1,0), vala = (1,1,1,0) and valz = 0. All other flows are empty.

The mapping Enabled is defined as follows:
Enabled(q0) = Afs .
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do_qo
qo
do_qo-q1
do_q1-q>
q1 ]
,// do_g2-q1
do_q1-93
do_q3-q4
43 |
do_q4_q3
do_q3-qf

Figure 1.8: PFF-RDFD.

(=IsEmpty(do_qo) A Head(fs(do_qo)) = start)
Enabled(q1) = Afs .
(=IsEmpty(do_qo-q1) A Head(fs(do_qo-q1)) = go)

V(= IsEmpty(do_ga_q1) A Head (fs(do_q2-¢1)) = go)
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V(= IsEmpty(o-ri_q1) A Head(fs(o-r1_q1)) = done)

V(= IsEmpty(o-ri_q1) A Head(fs(o-r1_q1)) = iszero)
Enabled(q2) = Afs .

(=IsEmpty(do_-q1-q2) A Head(fs(do_q1-q2)) = go)

V(= IsEmpty(o-rs_qa) A Head(fs(o-r3_q2)) = done)
Enabled(g3) = Afs .

(=IsEmpty(do_-q1-q3) A Head(fs(do_q1-q3)) = go)
V(= IsEmpty(do_qs_qs) A Head (fs(do_qs-q3)) = go)
V(= IsEmpty(o-ra_qs) A Head(fs(o-ra_q3)) = done)
V(= IsEmpty(o-ra_qs) A Head(fs(o-ra_q3)) = iszero)
Enabled(q4) = Afs .

(=IsEmpty(do_q3-q4) A Head(fs(do_q3-q4)) = go)

V(= IsEmpty(o-rs_qa) A Head(fs(o-r3_q4)) = done)
Enabled(qz) = Afs . false
Enabled(r) = Afs .

(=IsEmpty(i_q1r1) A Head(fs(i_g1-r1)) = add)

V(= IsEmpty(i_qur1) A Head(fs(i_q1-r1)) = sub

A= IsEmpty(valy) A Head (fs(valy

V(= IsEmpty(i_qur1) A Head(fs(i_q1-r1)) = sub

)
)
)
A= IsEmpty(valy) A Head(fs(valy)) = 1)
V(= IsEmpty(acty) A Head(fs(acty)) = yes
A= IsEmpty(valy) A Head(fs(valy)) = 1)
V(= IsEmpty(acty) A Head(fs(acty)) = yes
A= IsEmpty(valy) A Head(fs(valy)) =0
A= IsEmpty(nexti) A Head(fs(next1)) = 1)
Enabled (ry) = Afs .

(mIsEmpty(i_qs-re) A Head(fs(i_gz-r2)) = add)

V(= IsEmpty(i_qs_ra) A Head(fs(i_gz-r2)) = sub
A= IsEmpty(vals) A Head(fs(vals)) = 0)
V(= IsEmpty(i_qs_ra) A Head(fs(i_gz-r2)) = sub
A= IsEmpty(vals) A Head(fs(vals)) = 1)

V(= IsEmpty(acta) A Head(fs(actz)) = yes
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A= IsEmpty(vals) A Head(fs(vals)) = 1)
V(= IsEmpty(acta) A Head(fs(actz)) = yes
A= IsEmpty(vals) A Head(fs(vals)) =0
A= IsEmpty(nexts) A Head(fs(nexts)) = 3)
Enabled(rz) = Afs .
(mIsEmpty(i_qa-rs) A Head(fs(i_g2-r3)) = add)

V(= IsEmpty(i_qa_rs) A Head(fs(i_qa-r3)) = add)
V(= IsEmpty(i_qa_rs) A Head(fs(i_qa-r3)) = sub
A= IsEmpty(valz) A Head(fs(vals)) = 0)
V(= IsEmpty(i_qa_rs) A Head(fs(i_qa-r3)) = sub
A= IsEmpty(valz) A Head(fs(vals)) = 0)
V(= IsEmpty(i_qa_rs) A Head(fs(i_qa-r3)) = sub
A= IsEmpty(valz) A Head(fs(vals)) = 1)
V(= IsEmpty(i_qa_rs) A Head(fs(i_qa-r3)) = sub
A= IsEmpty(valz) A Head(fs(vals)) = 1)

V(= IsEmpty(acts) A Head(fs(acts)) = yes
A= IsEmpty(valz) A Head(fs(vals)) = 1)
V(= IsEmpty(acts) A Head(fs(acts)) = yes
A= IsEmpty(valz) A Head(fs(vals)) =0
A= IsEmpty(nexts) A Head(fs(nexts)) = 2)
V(= IsEmpty(acts) A Head(fs(acts)) = yes
A= IsEmpty(valz) A Head(fs(vals)) =0
A= IsEmpty(nexts) A Head(fs(nexts)) = 4)
As usual, we assume that whenever a set of input conditions on flows enables a bubble, all the head
elements on these flows will be consumed when this bubble actually goes from «dle to working. Therefore,
we omit to list the mapping Consume. We immediately continue with the mapping Produce.
Produce(qo) = A(fs, r) .
{if 7(q0)(do_qo) = start
then Out(go, do_qo-q1, q0)(fs,7)
fi

}
Produce(q1) = A(fs, r) .



{if 7(¢1)(do-go-q1) = go
then Out(sub,i_q1r1,q1)(fs,7)
fi

if r(q1)(do_ga2-q1) = go
then Out(sub,i_q1r1,q1)(fs,7)
fi

if r(q1)(0-r1-q1) = done
then Out(go, do_q1-q2,¢1)(fs,r)
fi

if 7(q1)(o-r1-q1) = iszero
then Out(go, do_q1-q3,¢1)(fs,r)
fi

}
Produce(g2) = A(fs, r) .

{if r(q2)(do_q1-q2)) = go

then Out(add,i_qz-r3, q2)(fs, )

fi

if 7(¢2)(0_rs_q2)) = done
then Out(go, do_ga_q1,¢2)(fs,r)
fi

}
Produce(qs) = A(fs,7) .

{if r(g3)(do_q1-qs) = go

then Out(sub,i_gs_rs, q3)(fs,7)

fi

if r(q3)(do_qa_g3) = go
then Out(sub,i_qzr2,q3)(fs,7)
fi

if r(qs)(0-ra-q3) = done
then Out(go, do_g3_q4,¢3)(fs,7)
fi

bl

if 7(¢3)(0-ra_qs) = iszero
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then Out(go, do_gs_qy,q3)(fs, )
fi
}
Produce(q4) = A(fs, 7).
{if r(ga)(do_g3-q4)) = go
then Out(add,i_qs-rs, q4)(fs, )
fi,
if 7(q4)(0_rs_qs)) = done
then Out(go, do_gs_qs,q4)(fs,r)

fi

}
Produce(gs) = A(fs,r) . {(fs. 47 = M . L]r))
Produce(ry) = A(fs, r) .

{if 7(r1)(i_q1_r1) = add
then Out(1, nexty, r,)(Out(yes, acty, r1)(Out(1, valy, 1) (fs,7)))
fi,
if #(r1) (isqir) = sub A v(r1)(valy) = 0
then Out(0, valy,r1)(Out(iszero, 0_ry g1, 1)(fs, 7))
fi,
if #(r1) (isqir) = sub A () (valy) = 1
then Out(1, nexty,r)(Out(yes, acty,r1)(fs,r))
fi,
if #(r1) (acty) = yes Ar(ri)(valy) = 1
then Out(yes, acty,r1)(Out(1, valy,r1)(fs,))
fi,
if #(r1)(acty) = yes Ar(ri)(valy) = 0 A r(r)(nexty) = 1
then Out(0, valy,r)(Out(done, o_r1 _q1,71)(fs, 7))
fi
}
Produce(rs) = A(fs, 7).
{if 7(ro)(i_qs_ra) = add

then Out(3, nexts, r2)(Out(yes, acta, r2)(Out(1, vals, r2)(fs, r)))
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fi

if r(r2)(i—gz_ra) = sub A r(r2)(valz) =0

then Out(0, vala, r2)(Out(iszero, o_ra_qs, r2)(fs, 7))
fi,
if r(r2)(i—gz_ra) = sub A r(rq)(vals) =1

then Out(3, nexts, r2)(Out(yes, acta, r2)(fs,r))
fi,
if r(ra)(acts) = yes Ar(ra)(valy) =1

then Out(yes, acta, r2)(Out(1, vala, ra)(fs, r))

fi

if r(ra)(acts) = yes Ar(ra)(vals) = 0 Ar(re)(nexts) =3
then Out(0, vala, 7o) (Out(done, o_ra_qs, r2)(fs, 7))
fi

}
Produce(rs) = A(fs, r) .

{if r(r3) (i_qa_rs) = add

then Out(2, nexts, r3)(Out (yes, acts, r3)(Out(1, vals, r3)(fs, 7))

fi,
if (r3) (i_qa_rs) = add
then Out (4, nexts, r3)(Out (yes, acts, r3)(Out(1, vals, 3)(fs, 7))
fi

if r(rs)(i-qa-rs) = sub A r(rz)(vals) =0
then Out(0, vals, r3)(Out(iszero, o_rs_qa, r3)(fs, 7))

fi

if r(rs3)(i-qa_rs) = sub A r(rz)(vals) =0

then Out(0, vals, r3)(Out(iszero, o_rs_qa, r3)(fs, 7))
fi,
if r(rs)(i—ga-rs) = sub A r(rz)(vals) =1

then Out(2, nexts, r3)(Out(yes, acts, r3)(fs,r))
fi,

if r(rs)(i—qa_rs) = sub A r(rz)(vals) =1

then Out(4, nexts, r3)(Out(yes, acts, r3)(fs, r))
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fi,
if r(rs)(acts) = yes Ar(rs)(valz) =1

then Out(yes, acts, r3)(Out(1, vals, r3)(fs, r))
fi,
if r(rs)(acts) = yes Ar(rs)(valz) = 0 Ar(rs)(nexts) = 2
then Out(0, vals, r3)(Out(done, o_rs_qa,r3)(fs,r))

fi,
if r(rs)(acts) = yes A r(rs)(vals) = 0 A r(rs)(nexts) =4
then Out(0, vals, r3)(Out(done, o_rs_qa, r3)(fs,r))

fi

} =

1.4 Summary

In this paper, we have shown that PFF-RDFD’s have the computational power of Turing Machines.
Therefore, all interesting decidability problems such as reachability, termination, deadlock and liveness
properties, and finiteness, that are undecidable for Turing Machines are undecidable for PFF-RDFD’s,
too.

Future work will have two directions: (i) simulation of FDFD’s that make use of persistent flows,
stores, infinite domains for flow values; and the facility for testing for empty flows through PFF-RDFD’s
and (ii) further restrictions on RDFD’s. Direction (i) should help to provide a mechanism such that
existing FDFD’s can be transformed into a basic model. Then, such a model might be used as input to
computer software for formal analysis and execution of FDFD’s such as the ML interpreter described
in [Wah95].

In direction (ii), we hope to find subclasses of RDFD’s where some decidability problems can be
solved. In particular, we would like to show that some of these subclasses can be simulated by Mono-
geneous FIFO Petri Nets, Linear FIFO Petri Nets, and Topologically Free Choice FIFO Petri Nets,
respectively, and that this simulation is still based on an 1somorphism. Then, since this type of a homo-
morphism preserves some decidability problems ([KM82]), we could immediately apply the results and
algorithms known for a subclass of FIFO Petri Nets ([FM82], [MF85], [Fin86], [Roud7], [FC88], [FR8Y],

to mention only a few) to the corresponding subclass of RDFD’s.
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