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Abstract. This paper discusses the estimation and visual-
ization of spatial cumulative distribution functions (CDFs)
with extensions to bivariate and higher dimensional CDFs.
The use of CDFs is an important part of the USEPA En-
vironmental Monitoring and Assessment Program's (EMAP)
work in assessing and monitoring the state of the nation's
environmental resources. The resources in a given region can
be classi�ed broadly into nominal, marginal, or sub-nominal
states. These can be obtained from the spatial CDF which,
in its entirety, o�ers the greatest exibility for investigation
of spatial and temporal trends. The emphasis in this pa-
per is on the computational and graphical techniques im-
plemented in an interactive environment. The environment
supports computation and visualization of CDFs over several
spatial regions and features interaction between and linking
of elements in the CDF plot and the map view. The work
involves communication of data between a geographic infor-
mation system (GIS), ArcView 2.0TM, and a program for
dynamic graphics, XGobi (Swayne et al., 1991).

1 Introduction

Large-scale monitoring of ecological resources is of vital
importance to the nation. Changes in the environment of a
long-term and global nature are almost impossible to detect
from local ecological studies taken sporadically in space and
time. If one observes a degradation in an ecological resource
in such a local study, it is not clear whether it is more re-
gional in scope or whether it is due to a unique condition
at the study site. Furthermore, if there are no repeat visits
to a site, it is not clear whether the observed ecological con-
dition is degrading or improving over time. Further discus-
sion of the importance of well designed, large-scale, long-term
monitoring programs can be found in the articles by Messer,
Linthurst, and Overton (1991) and Stevens (1994).

The U.S. Environmental Protection Agency's (EPA) En-
vironmental Monitoring and Assessment Program (EMAP)
represents a commitment by the EPA to be more proactive
about the condition of the nation's environment. Up until
1987, almost all of the EPA's budget involved detecting rela-
tively local insults to the environment and then following up
with �nes, litigation, and remediation recommendations. To
use a medical analogy, the EPA often acted as a physician to a
rather large and at times unco-operative patient, discovering

and excising isolated illnesses as they arose. A public-health
approach would be to give the patient periodic physicals ac-
cording to a protocol made up of a list of benign diagnostic
procedures. Good public health policies pay enormous div-
idends in the long term, in spite of what may seem like a
considerable short-term expenditure. The EPA's EMAP has
the potential to reap these same sorts of dividends in an area
of vital importance to the nation and its environment.
The overall objectives of EMAP are to:

1. Estimate current status of and trends and changes in,
selected indicators of the condition of the Nation's eco-
logical resources on a regional basis with known statis-
tical con�dence.

2. Estimate the geographic coverage and extent of the Na-
tion's ecological resources with known con�dence.

3. Seek associations between selected indicators of natural
and anthropogenic stresses and indicators of the condi-
tion of ecological resources.

4. Provide annual statistical summaries and periodic as-
sessments of the Nation's ecological resources.

These four objectives all speak to the need for understand-
ing the condition of the nation's ecological resources at a re-
gional or even local level. This is explicitly stated in the �rst
goal (\Estimate the current status...") and the second (\Es-
timate the geographic coverage...") with words such as \re-
gional basis," \geographic coverage and extent". It is equally
important but implicitly stated in the third goal (\Seek asso-
ciations...") and the fourth (\Provide annual statistical sum-
maries..."). What is called the ecological fallacy (Robinson,
1950) is the presence of a relationship between two variables
at an aggregated level that is due simply to the aggregation
rather than to any real link. It has been known for some time
that successive aggregation of regionalized variables tends to
increase correlations, even though the correlation at the dis-
aggregated level is zero (Yule and Kendall, 1950, pp. 310-
313; Openshaw and Taylor, 1979). Therefore, the summaries
provided and the associations sought in EMAP need to be
based on estimates at the most local level possible, yet still
with enough precision to allow meaningful conclusions. Con-
sequently, spatial statistics is highly relevant to the goals of
EMAP.
We have formed a research team at Iowa State University

to carry out spatial statistics research applied to ecological



resource monitoring programs. An important component of
that research is estimating, visualizing, exploring, and com-
paring spatial cumulative distribution functions (CDFs) over
di�erent spatial regions. The main thrust of this paper is
a discussion of the graphical and computational techniques
being developed to support this work. In addition to this, we
shall also discuss some of our work on associated con�rmatory
methods to test and compare spatial CDFs. However, before
these discussions can proceed the theoretical and philosoph-
ical basis for our work must be established.
Consider a multivariate space-time process,

fZ(s; v) : s 2 D;v 2 Tg;

where hereZ is a vector of ecological indices, D is the spatial
domain of interest (think of D � IR2) and T is an index set
representing some beginning and then all future time points.
For the study that we are considering in this paper, Z is
the bivariate process that represents the crown dieback index
and the foliage transparency index; D is the northeast USA
given by the states of Maine, New Hampshire, Vermont, Mas-
sachusetts, Rhode Island and Connecticut, and T = f1991g.
In fact, because we believe these processes are relatively sta-
ble over time, a regional investigation of the process at just
one recent time point will allow us to draw conclusions about
the regions that should still be relevant to the present-day.
As more data become available, we intend to use our methods
to look for both regional and temporal changes.
Henceforth, consider the multivariate spatial process

fZ(s) : s 2 D0g; (1:1)

where D0 represents forested locations in D. There is a scal-
ing issue of when individual trees begin to look like a forest,
in which case one can represent the ecological index as a ran-
dom �eld with continuous spatial index. Because the �eld
data are taken over a small study site, which we shall de-
note as �, we chose this as our standard area. Its geometric
con�guration is given in Figure 1.
Henceforth, we shall de�ne � as the spatial support unit

(SSU). Thus, at location s, we have SSU �(s) and

Z(s) �

n(s)X
i=1

DBHi � (CDBi; FTRi)

n(s)X
i=1

DBHi

; s 2 D0; (1:2)

where the indicesZ(s) represent the nature of the tree crown
as a response to stressors and are composed of two observ-
ables, crown dieback (CDB) and foliage transparency (FTR).
The size of each tree is measured by its diameter at breast

height (DBH).
The choice of SSU can a�ect inferences, a phenomenon we

referred to earlier as the ecological fallacy. In the geogra-
phy literature, this is referred to as the modi�able areal unit
problem (e.g., Openshaw and Taylor, 1979). The choice we
have made comes from a desire to match SSUs with the ones

Figure 1: Geometric con�guration of forest sampling

site. Reprinted from Tallent-Halsell, 1994.

that are used in the �eld. Further, SSU � also represents
an area large enough to allow su�cient spatial averaging in
(3) yet small enough to capture local uctuations in small
geographic areas.
A number of de�nitions are needed. First, we shall use the

convention

fZ(s) � zg � fZ1(s) � z1g \ fZ2(s) � z2g; (1:3)

where Z(s) = (Z1(s); Z2(s)) and z = (z1; z2). The spatial
CDF F1 is de�ned as follows:

F1(z;B0) �

Z
B0

I(Z(u) � z)du=jB0j;z 2 IR2; (1:4)

where B � D is a well de�ned region of interest whose
forested part is

B0 � B \D0; (1:5)

jB0j denotes the area of B0; and I(A) denotes the indicator
function equal to one if A is true and equal to zero otherwise.
Should B0 = �, we say that F1 is unde�ned. On the other
hand, if

B0 = fu1;u2; � � �g; (1:6)

a countable collection of locations, then

F1(z;B0) � lim
M!1

MX
i=1

I(Z(ui) � z)=

MX
i=1

1 : (1:7)



Indeed, given the nature of sampling, we shall have to ap-
proximate the conceptual CDF (1.4) with a (�nite) version
like (1.7). In what is to follow, we shall tesselate the region
B0 into \tiles" made up of Thematic Mapper (TM) pixels
(30m�30m). Let

B0 =

N(B0)[
i=1

fA(ui)g; (1:8)

where A(ui) represents the TM pixel de�ned at center point
ui. There are N(B0) such pixels that make up B0. On occa-
sions, when discretization of the continuum in B0 is necessary,
we use (1.8) and replace the de�nition (1.4) with

F1(z;B0) �

N(B0)X
i=1

I(Z(ui) � z)=N(B0); (1:9)

where Z(ui) refers to the CDB and FTR indices de�ned
over �(ui) located at the point ui; i = 1; :::;N(B0).

Notice that we have e�ectively replaced the process
Z(u);u 2 D0, with a discrete process

fZ(ui) : i = 1; : : : ;N(D0)g; (1:10)

where N(D0) is the number of TM pixels that tesselate D0 in
a manner analogous to (1.8). This discretization is essential
for making progress but does introduce an approximation,
the e�ect of which deserves further study.

At this juncture, it is worthwhile emphasizing the di�er-
ence between spatial CDFs and theoretical CDFs. Consider
observations fZ(s1); : : : ;Z(sm)g on the process Z(�) at
any set of locations fs1; : : : ;smg in D0. Then their theo-
retical CDF is given by,

Gs1;:::;sm(z1; : : : ;zm) � Pr(Z(s1) � z1; : : : ;Z(sm) � zm):
(1:11)

In particular, in Section 4, we shall be interested in Gs(z)
and Gs1;s2

(z1;z2). Notice that the theoretical CDF is a

parameter of the process Z(�), whereas the spatial CDF is a
measurable function of Z(�) and hence it is a random quan-
tity. Our goal in this research is to predict or, loosely speak-
ing, estimate the spatial CDF F1 of a region B0. In EMAP,
the emphasis is on the ecological populations rather than the
theoretical population of an assumed statistical model.

Available to researchers are data from the �eld. De�ne

Z � (Z(s1)
0; : : : ;Z(sn)

0)0; (1:12)

obtained from sampling locations fs1; : : : ;sng. Notice that
it is highly unlikely that fu1; : : : ;uN(D0)g and fs1; : : : ;sng
share any locations, which means it is important to maintain
the conceptual continuous spatial model.

Having established the theoretical basis for our work, Sec-
tion 2 of this paper will briey consider estimation of (1.4)

or (1.9) based on data Z. Section 3 will describe the dy-
namic graphical environment developed to visualize and ex-
plore spatial CDFs. Visualization of both univariate and bi-
variate spatial CDFs will be illustrated. Section 4 will intro-
duce the associated con�rmatory methods being developed
to test and compare univariate spatial CDFs. Section 5 will
conclude with a summary and discussion of future research
directions.

2 Spatial CDF Estimation

As developed here, estimation of a spatial CDF refers to
estimation of either the continuous version or the discrete
version of F1(z ; B0), given in equations (1.4) and (1.9),
respectively. In what is to follow, we use the discrete ver-
sion (1.9), which allows a uni�ed development of the estima-
tion problem. We assume that, connected with the spatial
sampling locations fs1; : : : ; sng, there are a set of known
weights fu(s1); : : : ; u(sn)g. These might, for example, cor-
respond to inclusion probabilities from a sampling design or
to importance weights in a resource management plan. A
basic estimator of (1.9) is

F̂n(z; B0) =

Pn

i=1
u(si)I(Z(si) � z )Pn

i=1 u(si)
: (2:1)

Notice that the CDF (1.9) is of the same form as the estima-
tor (2.1) with u(si) � 1, n replaced by N(B0), and Z(si)
replaced by Z(ui). In the rest of this section, we consider
the simpler univariate case, fZ(s) : s 2 D0g. The �rst two
moments of F̂n(z; B0) given by (2.1) are

E
�
F̂n(z; B0)

�
=

Pn

i=1
u(si)Pr(Z(si) � z )Pn

i=1
u(si)

; (2:2)

which is a weighted average of the theoretical CDFs
Pr(Z(si) � z ) � Gsi(z); and

E
�
F̂ 2
n(z; B0)

�
=Pn

i=1

Pn

j=1 u(si)u(sj)Pr (Z(si) � z ; Z(sj) � z )�Pn

i=1 u(si)
�2 :

Therefore,

var
�
F̂n(z; B0)

�
=

nX
i=1

nX
j=1

u(si) u(sj) fPr (Z(si) � z ; Z(sj) � z ) �

Pr (Z(si) � z) Pr (Z(sj) � z)g �

 
nX
i=1

u(si)

!
�2

:(2.3)

If we assume that Z(�) in (1.1) has an invariant distribution,
so thatGs(z) = G0(z) does not depend on s, then F̂n(z; B0)
is an unbiased estimator of G0(z) for any B0 � D0, and (2.3)



may be written as

var
�
F̂n(z; B0)

�
=(

nX
i=1

nX
j=1

u(si)u(sj)
n
Gsi;sj (z; z)�

G2
0
(z)
		

=

 
nX
i=1

u(si)

!2

; (2.4)

where Gs;s0 denotes the joint theoretical CDF of Z(s) and
Z(s0). Notice that, when s = s0, Gs;s0(z; z) = Gs(z) =
G0(z).
Of central importance in the use of spatial CDFs is the

comparison of two di�erent estimators of the form (2.1). Such
estimators may correspond to di�erent weights for the same
locations in a given region, di�erent overlapping sets of loca-
tions in a region, or di�erent subregions. In addition, because
the quantity to be estimated, (1.9), is of the same form as
the general estimator (2.1), comparison of an estimator with
the corresponding true spatial CDF takes the same form as
the comparison of two estimators. Consider two estimators
F̂n;1 and F̂m;2 de�ned by equation (2.1) over subregions of
D0 with associated locations

!1 =
�
i : Z(si) contributes to F̂n;1

	
!2 =

�
j : Z(sj) contributes to F̂m;2

	
and weights

fu(si) : i 2 !1g ; fv(sj) : j 2 !2g :

Here, j!1j = n and j!2j = m and we write the di�erence
between the two estimators as

�n;m(z) = F̂n;1(z) � F̂m;2(z): (2:5)

Consequently,

var (�n;m(z)) = var
�
F̂n;1(z)

�
+ var

�
F̂m;2(z)

�
�

2cov
�
F̂n;1(z); F̂m;2(z)

�
: (2.6)

Again, assuming an invariant distribution for Z(�),
E(�n;m(z)) = 0 and

var (�n;m(z)) = E
�
�2
n;m(z)

�
=

1�P
i2!1

u(si)
�2 X

i2!1

X
j2!1

u(si)u(sj)Gsi ;sj (z; z) +

1�P
i2!2

v(si)
�2 X

i2!2

X
j2!2

v(si)v(sj)Gsi;sj (z; z) �

2�P
i2!1

u(si)
� �P

i2!2
v(si)

� �
X
i2!1

X
j2!2

u(si)v(sj)Gsi;sj (z; z) :

(2.7)

If F̂m;2 is taken to be the spatial CDF F1, then (2.7)
represents a mean squared prediction error (MSPE). If both
F̂n;1 and F̂m;2 are estimators of the spatial CDF, then (2.7)
is the variance of the di�erence between these two estimators
at the value z. In either case it is not su�cient for inferential
purposes to know variances of CDF estimators only. One
must also know covariances. Equivalently E

�
�2
n;m(z)

�
may

be obtained directly through (2.7). We have already noted
that, upon taking F̂m;2 to be the true spatial CDF F1, the
right hand side of (2.7) is the MSPE. This expression may
be compared with the variance (2.4). This latter expression
is a measure of expected squared di�erence of the estimator
F̂n from its own expected value, namely the theoretical CDF
G0. The MSPE given in equation (2.7) is a measure of the
expected squared di�erence of the estimator from the true
spatial CDF F1.

Estimation of both (2.4) and (2.7) depends only on the
ability to estimate joint theoretical CDFs Gs;s0 for pairs of
locations. Indeed, one must estimate these joint probabilities
for any pair of locations in D0, not only locations that have
contributed to a particular estimator.

3 Exploratory Analysis of Regional CDF
Estimates

The topic of this section is the development of a dynamic
graphical environment to visualize and explore spatial CDFs.
We view graphical methods as an integral part of the analysis
process. Graphical methods are used to identify structure
within the data, as well as the type of structure (e.g., linear,
non-linear, spatial) that is present. These methods are used
to check the appropriateness of any assumptions that underly
methods to be used. They are also used to see if �tted models
are parsimonious with the data to which they are �t.

Our objectives in the development of these methods are 1)
that they are very dynamic, allowing much analyst interac-
tion; and 2) that they maintain a strong connection between
the spatial locations of the sampling sites and the collected
data. These objectives have been accomplished by develop-
ing a bi-directional link between ArcView 2.0TM, a geographic
information system (GIS), and XGobi, a dynamic graphi-
cal data analysis system (Swayne, et al., 1991). For a more
detailed discussion on the technical aspects of this link see
Symanzik, Majure, and Cook (1995).

The main motivation for attempting to link a GIS with
XGobi was the desire to maintain a strong connection be-
tween the spatial locations of the sampling sites and the col-
lected data. The use of a GIS allows the data to be analyzed
in the visual context that concomitant geographic variables
provide. In a GIS, the sampling locations can be viewed in a
setting of streams, roads, cities, soil types, and topography,
just to name a few.

The ArcView 2.0 GIS was chosen for several reasons, the
two most important of which were the ability to conduct

TM
ArcView 2.0 is a trademark of Environmental Systems Re-

search Institute, Inc.



inter-process communications and the customizable, interac-
tive interface. The use of the remote procedure calls (RPCs)
for interprocess communications between ArcView 2.0 and
XGobi made the link quick enough for interactive use. RPC
servers were established in both systems so that user actions
taken in either system could be relayed to the other. ArcView
2.0's user interface also makes displaying various geographic
features, and panning and zooming within the displayed re-
gion easy.

XGobi is a dynamic graphical system that allows the ma-
nipulation of scatter plots of highly multivariate data. Some
of the capabilities of XGobi include three-dimensional rota-
tion, grand tour rotation (Asimov, 1985, Buja and Asimov
1986),projection pursuit and linked color and glyph brushing.
XGobi also allows points to be connected with lines, a capa-
bility used to implement the current graphics environment.

The capabilities of the developed graphics environment in-
clude: 1) the ability to delineate regions in the GIS and to
see the corresponding empirical CDF estimate; 2) the abil-
ity to brush points in areas for which CDF estimates have
already been de�ned and see where they lie in the CDF; and
3) the ability to brush quantiles of the estimated CDFs and
see where the corresponding points lie in the spatial region.
These capabilities are demonstrated by conducting an anal-
ysis on a univariate ecological index as described in the fol-
lowing paragraphs.

In this analysis we examine the CDF computed on the
crown defoliation index (CDI) which is a weighted average
of the two variables, crown dieback (CDB) and foliage trans-

parency (FTR) introduced in Section 1.

Z(s) �

n(s)X
i=1

DBHi � (CDBi + FTRi)=2

n(s)X
i=1

DBHi

; s 2 D0;

where DBHi is the diameter at breast height of tree i; i =
1; : : : ; n(s).

Crown dieback refers to the percentage of dead branches
in the upper sunlight exposed parts of the tree crown. The
assumption is that these branches have died from stressors in
the environment other than lack of light. It is measured as a
percentage in increments of 5 from 0 to 100. Foliage trans-
parency refers to the amount of light penetrating foliated
branches. It ignores \holes" in the tree due to bare branches
and is measured on the same scale as crown dieback.

Figure 2 shows the CDFs computed and plotted for two
regions. The CDF estimator is that given in equation (2.1).
The black CDF is computed on values from the state of
Maine and the grey CDF is computed over the remaining
�ve states in the northeast United States, indicated by the
polygonal brushing done in the map view. The two CDFs
di�er markedly in the middle (around the value 500 on the
horizontal axis), where the state of Maine has higher values.
This indicates that the proportion of trees with lower crown

defoliation index values in the state of Maine is higher, sug-
gesting that the forests in the �ve southern New England
states are reacting more negatively to stressors than those of
Maine. This would need to be examined in more detail and a
quanti�cation of variability in the CDF estimates is required
before conclusive statements can be made.

Once major regions are isolated it is possible to brush tran-
siently in further subregions to examine the position of these
values in the CDF plot. In Figure 3, the states of Connecti-
cut and Rhode Island have been brushed in this way, and it
can be seen that the index values fall in the central to lower
portion of the CDF. This indicates that the trees in this sub-
region have lower crown dieback and foliage transparency,
and so appear to be healthier than trees in the rest of the
region.

Now we turn to the idea of examining the three cate-
gories of resource health: nominal (good), marginal, and sub-
nominal (poor). The category sub-nominal corresponds to
high index values. These high values are brushed in the CDF
plot (Figure 4) and the sampling sites corresponding to these
index values are highlighted in the map view. The map view
shows that there is a smaller proportion of sampling sites
with these high index values in Maine, echoing the di�erence
just noted in the CDFs.

Finally one of the strengths of integrating these high inter-
action graphical tools with a GIS is that further concomitant
variables can be overlaid in the map view. Figure 4 shows the
population density on the map. There does not seem to be
any association between population density and high crown
defoliation index values, although it is clear that there are
fewer sampling sites in the more heavily populated areas.

Extensions to higher-dimensional CDFs are relatively
straightforward. Because XGobi is designed to handle high-
dimensional data, it is a relatively simple matter to calculate
high-dimensional CDFs and pass the variables, for example,
three variables for a bivariate CDF (two sets of index values
and a function value). The CDF can be viewed using lower
dimensional projections, for example, rotation, a grand tour,
or a correlation tour. The CDFs are not smooth and function
values exist only where measurements have been taken. But,
for the quick and exploratory approach we have adopted, the
method su�ces for now and can be reasonably e�ective when
the number of sample points is large. In general, plotting of
high-dimensional functions is not intuitive. Some work on vi-
sualization of three- and four-dimensional density functions
can be found in Scott (1992).

Figure 5 shows three projections of two bivariate CDFs
of the measurements CDB and FTR, one CDF is computed
on measurements in the state of Maine (black), and the sec-
ond is computed on measurements in the remaining states
(grey). The left graph in this �gure displays the CDF value
vertically and a projection containing equal proportions of
CDB and FTR horizontally. A di�erence between the two
CDFs can be seen in the middle values and this reects the
di�erence observed above in the CDF for the crown defoli-
ation index. This is not surprising since the index is based
on an average of the two measurements and the projection
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vance how to weight the indices in the aggregation. This
example shows a reason why it is important to keep the full
dimensionality.

4 Inference for Spatial CDFs

In this section, we consider inference for estimated spa-
tial CDFs. Quantities of central concern to the inferential
process are measures of squared discrepancy between an esti-
mator and the corresponding true spatial CDF, its expected
value, or another estimator. We de�ne the general criterion
of weighted mean integrated squared error (WMISE) as

Q(n;1; w) � E

�Z
1

�1

�
F̂n(z; B0) � F1(z; B0)

	2
w(z)dz

�
;

(4:1)
where F1(z; B0) is either the continuous (1.4) or discrete
(1.9) version of the true spatial CDF, and w : IR ! IR is
a non-negative, integrable weight function. Similarly, de�ne
the weighted mean integrated squared distance (WMISD) be-
tween two CDF estimators as

Q(n;m; w) � E

�Z
1

�1

�
F̂n;1(z; B0)� F̂m;2(z; B0)

	2
w(z)dz

�
:

(4:2)
As noted in Section 2, when the spatial CDF F1(z; B0) is

taken as the discrete version in equation (1.9), then WMISE
in (4.1) has the same form as WMISD, in which case only
equation (4.2) need be considered.
An important special case is if the weight function w(�) is

an indicator function for z 2 (a; b), in which case Q(n; �; w) is
a measure of discrepancy for those z-values restricted to the
interval (a; b). Thus, through appropriate choice of a and
b, WMISE and WMISD can be used to assess the behavior
of CDF estimators over subnominal, marginal, or nominal
levels of the ecological index of concern. While the quantities
WMISE and WMISD are the primary focus for inference on
spatial CDFs, it may also be desired to estimate the variance
of an estimator, given by equation (2.3).
We are currently pursuing two approaches to estimation

of the quantities Q(n; � ; w) and var
�
F̂n(z ; B0)

�
. The �rst is

based on straightforward estimation of joint theoretical CDFs
for pairs of locations through indicator variograms. The sec-
ond approach is more exible and is based on the use of
subsampling procedures. Both methods will allow inference
on spatial CDFs to be carried out.

5 Future Directions

The work being reported on in this paper is on-going. The
progress made thus far will provide a �rm basis for further
work. Speci�c areas for future research include:

1. Inference on spatial CDFs. The work on inference on
spatial CDFs is continuing through indicator variograms
and subsampling methods (as described above).

2. Visualization of variation. The graphical tools that we
have developed thus far do not include any capabilities
to visualize the variability of spatial CDF estimates. In

order for the graphical analysis of spatial CDFs to be
e�ective, visualization of variability is paramount. We
intend to further develop our tools in this area.

3. Inclusion of additional graphical tools for spatial anal-

ysis. The visualization technology described in Section
3 provides a platform for additional types of graphical
tools for spatial analysis. In addition to CDFs, it is pos-
sible to display spatially lagged scatter plots and vari-
ogram cloud plots while maintaining the link between
the graphic and the spatial locations.

4. Use of remotely sensed images for improving spatial

CDF estimation. Satellite images of the spatial domain
provide a potentially invaluable source of concomitant
information that can be exploited in order to increase
the precision of spatial CDF estimates.

When completed, this research will provide a set of tools,
both theoretical and applied that can be used for the e�ec-
tive analysis of broad-based, ecological resource monitoring
problems.
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