Chapter 9.3 Homework Page

Exercises 1-4 Solve, Draw Graphs Find all pairs of real numbers x, y that satisfy the system of equations. Draw graphs and show points of intersection (if any).

1. $2 x-y=-2$

$$
x y=4
$$

Solution:

From $E_{1}, y=2 x+2$; substitute into $E_{2} . x(2 x+2)=4, x^{2}+x-2=0,(x+2)(x-1)=0, x=-2$ or $x=1$. When $x=-2, y=2(-2)+2=-2$. When $x=1, y=2 \cdot 1+2=4$. From graphs we see that the line and the graph of $x y=4$ intersect at points $(-2,-2)$ and $(1,4)$.
2. $x+y=2$
$x^{2}+y^{2}=2$

Solution:

From the first equation, $x=2-y$; substitute into the second equation. $(2-y)^{2}+y^{2}=2$, $4-4 y+y^{2}+y^{2}=2, y^{2}-2 y+1=0,(y-1)^{2}=0, y=1$. When $y=1, x=2-1=1$. Draw graphs and see that the line and circle just touch (are tangent) at the point (1,1).
3. $y=x^{2}-4 x+4$
$y=-2 x^{2}+x+16$

Solution:

Eliminating y, we get $x^{2}-4 x+4=-2 x^{2}+x+16$, or $3 x^{2}-5 x-12=0,(3 x+4)(x-3)=0$, $x=-4 / 3$ or $x=3$. When $x=-4 / 3, y=100 / 9$. When $x=3, y=1$.
The graphs are two parabolas that intersect at $(-4 / 3,100 / 9)$ and $(3,1)$.
4. $2 x-y=0$
$x y-y=2$

Solution:

From $E_{1}, y=2 x$; substitute into $E_{2} \cdot x(2 x)-2 x=2, x^{2}-x-1=0, x=(1 \pm \sqrt{5}) / 2$. When $\mathrm{x}_{1}=(1+\sqrt{5}) / 2 \approx 1.62, \mathrm{y}=2 \mathrm{x}_{1}=1+\sqrt{5} \approx 3.24$. When $\mathrm{x}_{2}=(1-\sqrt{5}) / 2 \approx-0.62, \mathrm{y}=2 \mathrm{x}_{2}$ $=1-\sqrt{5} \approx-1.24$. Draw graphs and see that the line and the rational function, $\mathrm{y}=2 /(\mathrm{x}-1)$, intersect at approximately $(1.62,3.24)$ and $(-0.62,-1.24)$.

Exercises 5-6 Nonlinear Systems Solve the system of equations. If results involve irrational numbers, give approximations rounded off to two decimal places.
5. $y=e^{x}$
$x+\ln y=0$

Solution:

From $E_{2}, x=-\ln y$; substitute into $E_{1} . y=e^{-\ln y}, y=e^{\ln y^{-1}}, y=y^{-1}, y=1 / y, y^{2}=1$. Therefore, $\mathrm{y}=1$ or $\mathrm{y}=-1$. When $\mathrm{y}=1, \mathrm{x}=-\ln 1=0$. When $\mathrm{y}=-1, \mathrm{x}=-\ln (-1)$, undefined.
Therefore, there is only one solution, $(0,1)$.
6. $3^{x}+3 y=10$
$3^{x-1}-y=8$

Solution:

From $E_{2}, y=3^{x-1}-8$; substitute into $E_{1} \cdot 3^{x}+3\left(3^{x-1}-8\right)=10,3^{x}+3^{x}-24=10,2 \cdot 3^{x}=34$, $3^{x}=17, \ln 3^{x}=\ln 17, x \ln 3=\ln 17, x=\ln 17 / \ln 3 \approx 2.58$. When $x \approx 2.58, y=3^{x-1}-8$ $\approx 3^{1.58}-8 \approx-2.33$. Therefore, there is only one solution, $(2.58,-2.33)$.

Exercises 7 Rectangles

7. Find the dimensions of a rectangle that has a diagonal of length 13 cm and a perimeter of 34 cm .

Solution:

Let x, y be the dimensions of the rectangle with diagonal $13 \mathrm{~cm}: \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=13$. Perimeter is $34 \mathrm{~cm}: 2 \mathrm{x}+2 \mathrm{y}=34$. Therefore, we want solutions to the system of equations $\mathrm{x}^{2}+\mathrm{y}^{2}=169$, $x+y=17$. Solving we get $x=5, y=12$ or $x=12, y=5$. Therefore, the rectangle is $5 \mathrm{~cm} \times 12 \mathrm{~cm}$.

