Math 5710
Continuous Random Variables

1. Let \[f(x) = cx^2 \] for \(0 < x < 2 \).
 a) Find the value of \(c \) that makes \(f(x) \) a density function for a random variable \(X \).
 b) Find the cumulative distribution function for \(X \).
 c) Find \(P(X^2 < 2) \)

2. When a certain component of a manufacturing process breaks down, the time that it takes to fix it (in hours) is a random variable with the density function

\[
 f(x) = \begin{cases}
 ce^{-3x} & \text{if } 0 \leq x < \infty \\
 0 & \text{otherwise.}
 \end{cases}
\]

 a) Calculate the value of \(c \).
 b) Find the probability that, when this component breaks down, it takes at most 2 hours to fix it.