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1. Axiom of extension.  Two sets are equal if and only if they have the same elements.

2. Axiom of unions.  For every collection of sets there exists a set that contains all the

elements that belong to at least one set of the given collection.

3. Axiom of specification.   To every set  A  and to every condition  S(x)  there

corresponds a set  B  whose elements are exactly those elements  x  of  A  for which  S(x)

holds.

4. Axiom of pairing.  For any two sets there exists a set that they both belong to.

5. Axiom of powers.   For each set there exists a collection of sets that contains among

its elements all the subsets of the given set.

6. Axiom of infinity.  There exists a set containing 0 and the successor of each of its

elements.

7. Axiom of substitution.  If  S(a,b)  is a sentence such that for each  a  in set  A  the set

{b: S(a,b)}  can be formed, then there exists a function  F  with  domain  A  such that

F(a) = {b:S(a,b)}  for each  a  in A.  (Anything intelligent that one can do to the elements

of a set yields a set.)

8. Axiom of choice.   The Cartesian product of a non-empty family of non-empty sets is

non-empty.


