Math 4200 Assignment

Definition. Suppose \(f \) is a function defined in a neighborhood of the point \(x = a \).
(This means that \(f \) is defined in some open interval containing \(x = a \), except perhaps at the point \(x = a \).) Then \(f \) has a limit as \(x \) approaches \(a \) provided there exists a number \(L \) such that

for each \(\epsilon > 0 \), there exists \(\delta > 0 \) such that

if \(0 < |x - a| < \delta \) then \(|f(x) - L| < \epsilon \).

We write \(\lim_{x \to a} f(x) = L \).

Definition. Suppose \(f \) is a function defined in some open interval containing \(x = a \).
Then \(f \) is continuous at \(x = a \) provided

\[
\lim_{x \to a} f(x) = f(a).
\]

The function \(f \) is continuous on an open interval \((a, b)\) provided \(f \) is continuous at each point of \((a, b)\).

1. Suppose \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \). Prove the following:

a) \(\lim_{x \to a} f(x) + g(x) = L + M \)

b) \(\lim_{x \to a} c \cdot f(x) = c \cdot L \) (\(c \) is a constant)

c) \(\lim_{x \to a} f(x) \cdot g(x) = L \cdot M \)

d) \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \) (Assume \(M \neq 0 \) and \(g(x) \neq 0 \) for all \(x \).)
2. Use the definition of the limit to decide whether the following limits exist at the indicated point.

a) \(\lim_{x \to 4} \sqrt{x} \)

b) \(\lim_{x \to 0} \frac{|x|}{x} \)

c) \(\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} \)

3. Suppose \(\lim_{x \to a} f(x) = 0 \) and \(g \) is a bounded function.

Prove that \(\lim_{x \to a} f(x) \cdot g(x) = 0 \).

4. State and prove a "squeeze theorem" for limits of functions.

5. Let \(f \) be a function which is continuous at \(x = a \). Prove that there exist \(K > 0 \), \(\delta > 0 \) such that \(|f(x)| < K \) for all \(x \) in the interval \((a - \delta, a + \delta) \).