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“God	made	natural	numbers;	all	else	is	the	work	of	man.”	

‐‐	Leopold	Kronecker	

	 The	above	quote	states	that	the	natural	numbers	are	what	we	were	given,	and	all	other	
numbers,	such	as	integers	and	rational	numbers,	were	created	from	them.		This	implies	that	all	
other	sets	of	numbers	can	be	formed	out	of	the	natural	numbers.		The	object	of	this	paper	is	to	show	
the	connection	between	each	set	of	numbers	by	showing	how	we	can	form	each	set	from	the	
natural	numbers.	

	 We	will	begin	by	defining	all	our	terms.		Let	J	represent	the	set	of	all	natural	numbers,	W	
represent	the	set	of	all	whole	numbers,	Z	represent	the	set	of	all	integers,	Q	represent	the	set	of	all	
rational	numbers,	and	R	represent	the	set	of	all	real	numbers.		We	will	use	Peano’s	Axioms	to	define	
the	natural	numbers	in	order	to	give	us	a	starting	point.		Peano’s	Axioms	are	as	follows:	

	 Axiom	1:	1	is	a	natural	number.		That	is,	our	set	is	not	empty;	it	contains	an	object	called	
“one.”	

	 Axiom	2:	For	each	x,	there	exists	exactly	one	natural	number,	called	the	successor	of	x,	
which	will	be	denoted	by	x’.	 think	x’	 	x	 	1 	

	 Axiom	3:	We	always	have	x’ 1.		That	is,	there	is	no	number	whose	successor	is	1.	

	 Axiom	4:	If	x’ y’	then	x y.		That	is,	for	any	given	number,	there	exists	either	no	number	or	
exactly	one	number	whose	successor	is	the	given	number.	

	 Axiom	5	 Axiom	of	Induction :	Let	there	be	given	a	set	J	of	natural	numbers,	with	the	
following	properties:	

I. 1	belongs	to	J.	
II. If	x	belongs	to	J,	then	so	does	x’.	

Then	J	contains	all	the	natural	numbers.		Thus,	if	1’ 2,	2’ 3,	3’ 4,	…,	then											
J 1,	2,	3,	4,	… .	

	 From	this	definition	of	the	natural	numbers,	we	can	easily	create	the	set	of	all	whole	
numbers	by	including	zero.		We	will	let	W	have	the	same	properties	as	J,	except	for	we	will	let	0	
belong	to	W	such	that	0’ 1	and	0	is	not	the	successor	of	any	number.		Thus,	W	 	 0,	1,	2,	3,	… .		We	
will	now	define	addition	and	multiplication	as	follows:	

Addition	 :	For	all	x,	x 1	 	x’.		For	all	x	and	y,	x y’	 	 x y ’.	

Notice	that	2 1’,	so	we	have	the	following:	4 2	 		4 1’	 	 4 1 ’	 	 4’ ’	 	6.			



Multiplication	 * :	For	all	x,	x*1	 	x.		For	all	x	and	y,	x*y’	 	x*y	 	x.	

For	example,	if	y 1	and	x 4,	then	x*y’	 	4*1’	 	4*1 4	 	4 4	 	8.	

We	will	now	define	0	as	follows:	0 x x	and	x*0 0	for	all	x.		From	here	we	can	easily	create	
the	integers	by	letting	–x	denote	the	additive	inverse	of	x.		This	means	that	x	 	 ‐x 	 	0	for	all	x.		
The	integers,	will	then	be	defined	as	follows:	

	 Z	 	 x:	x∈	J 	∪	 0 	∪	 ‐x:	x∈	J 	

	 Thus	Z	 	 …,	‐2,	‐1,	0,	1,	2,	… .		 To	see	more	about	building	the	integers,	see	
http://en.wikipedia.org/wiki/Integer#Construction .	

We	will	now	construct	the	rational	numbers	from	the	integers	by	constructing	equivalence	
classes	using	the	integers.		These	equivalence	classes	will	be	pairs	of	integers	put	together	as	
follows:	 a,b :	a,b∈Z,	b 0 .		Also,	 a,b 	is	equivalent	to	 c,d 	if	and	only	if	ad bc	 think	 a,b 	and	

c,d 	as	 	and	 	respectively. 		For	example,	let	 3,7 	denote	the	equivalence	defined	in	the	pair	

3,7 .		Then,	 3,7 	 	 a,b ∈	S:	 a,b 	 	 3,7 .		For	example,	 6,14 	 	 3,7 .		We	can	represent	

3,7 	by	the	pairs	 3,7 	or	 6,14 ,	or	more	formerly	as	 	or	 .		The	set	of	all	rational	numbers	Q	is	

built	from	these	equivalence	classes.		 Further	information	about	constructing	the	rationals:	
http://en.wikipedia.org/wiki/Rational_number#Formal_construction .		Addition	and	
multiplication	for	the	rational	numbers	are	as	follows:	

Addition:	 a,b c,d 	 	 ad bc,bd 	

Multiplication:	 a,b * c,d 	 	 ac,bd 	

Now	we	are	ready	to	construct	the	real	numbers.		Let	T	 	 rn :	rn	is	rational	and	 rn 	is	a	
Cauchy	sequence. 		We	will	let	two	sequences	 rn 	and	 sn 	in	T	be	equivalent	to	each	other	if	and	
only	if	lim → 	 0.		From	here,	it	is	easy	to	show	that	this	relation	is	reflexive,	transitive,	
and	symmetric.		The	set	T	is	partitioned	into	disjoint	equivalence	classes	which	we	will	call	real	
numbers.		For	example,	let	an	 	2	for	all	n.		The	equivalence	class	 an 	is	the	real	number	2.		The	

real	number	2	is	also	represented	by	 2	 	 .		Since	lim → 2 2	and	lim → 2 2,	then	

lim → 2 	 2 2 2 0	since	the	limit	of	the	sum	is	the	sum	of	the	limits.	

Consider	the	real	number	e.		We	can	represent	this	number	by	the	limit	of	the	binomial	

expansion:	lim → 1 .		Consider	the	binomial	expansion	for	n 1,000,000.		We	then	have	

1 2.71828046…		which	we	see	is	very	close	to	the	value	of	e.		Another	way	to	

approximate	the	number	e	is	through	the	Taylor	series	expansion	for	 ∑
!
	for	x 1.		This	

gives	us	∑
! ! ! ! !

⋯		By	adding	the	terms	of	this	series	through	n 15,	we	get	

2.71828182…	which	is	also	rather	close.		These	continue	to	get	closer	and	closer	to	e	as	n	
approaches	infinity.	



	 Now	consider	the	real	number	 .		Just	like	e,	there	are	various	ways	that	we	can	
approximate	 	as	well.		For	example,	we	have	the	Gregory‐Leibniz	series	as	follows:	

4∑ 4 ⋯ .		This	approximation,	however,	converges	too	slowly	for	it	

to	be	a	practical	approximation.		Another	approximation	was	given	by	Newton:	

2 ∑
!

!
2 1 1 1 1 ⋯ .	

	 We	will	now	look	at	a	series	to	represent	√2.		Let	rn	be	the	sequence	of	largest	rational	
numbers	with	denominator	less	than	or	equal	to	n	such	that	 rn 2	 	2.		This	gives	us	the	following	

sequence:	 1,1, ,	 ,	 ,… 	which	is	a	Cauchy	sequence	such	that	lim → √2.		Given	that	sin
√ 	

and	sin x 	 	∑
!
,	then	we	get	that	√2	 	2sin 	 	2∑

!
	∑

!
.		

Thus,	√2	 	
! ! !

⋯.		In	a	like	manner,	by	using	cos x 	in	place	of	sin x ,	we	can	

show	that	√2	 	∑
!

2
! ! ! !

⋯.		Thus	we	see	that	we	can	find	

various	representations	for	various	real	numbers	including	the	irrational	numbers	like	 ,	e,	and	√2.	

	 We	will	now	take	a	look	at	the	number	Φ	 phi 	which	represents	the	golden	ratio.		This	
number	is	interesting	because	many	artists	and	architects	have	proportioned	their	works	to	
approximate	the	ratio	because	the	proportion	is	aesthetically	pleasing.		Two	quantities	a	and	b	are	

said	to	be	in	the	golden	ratio	Φ	if	 	Φ.		This	results	in	Φ √ 	 more	information	can	be	

found	at	http://en.wikipedia.org/wiki/Golden_ratio .		The	most	interesting	thing	about	this	
number	comes	from	one	method	of	its	construction.		From	the	Fibonacci	sequence	defined	as	
fn	 	fn‐1 fn‐2	where	f0 0	and	f1 1,	we	can	create	a	sequence	that	converges	to	Φ.		Consider	

lim → .		One	closed	formula	for	fn 	
√

√ .		It	is	easy	to	show	from	this	closed	formula	that	

√ 	Φ.		Thus,	the	sequence	of	the	ratios	of	successive	pairs	of	numbers	taken	from	the	

Fibonacci	sequence	will	converge	to	Φ.	

	


