Sequences of Real Numbers

Definition: A sequence of real numbers is simply a function \(f : J \to \mathbb{R} \). Sequences are usually denoted by \(f(n) = a_n \) for each \(n \) (the \(n \)-th term of the sequence), and we write \(\{a_n\} \) or \(\{a_n\}_{n=1}^{\infty} \) to represent the entire sequence.

Definition: The sequence \(\{a_n\} \) is said to converge to \(a \) if

for every \(\varepsilon > 0 \), there exists \(N > 0 \) such that if \(n > N \) then \(|a_n - a| < \varepsilon \).

The notation is \(\lim_{n \to \infty} a_n = a \) or \(a_n \to a \).

Theorem: Let \(\{a_n\} \) be a sequence of real numbers. Then \(a_n \to a \) if and only if every open interval containing \(a \), contains all but finitely many terms of the sequence.

Theorem: Every bounded monotone sequence converges.

Definition of \(e \):

For each \(n \), let \(a_n = \left(1 + \frac{1}{n} \right)^n \). Since \(\{a_n\} \) is increasing and bounded above, it must converge and we define \(e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \).

Basic Theorems on Sequences:

i) Every convergent sequence of real numbers is bounded.

ii) Suppose \(a_n \to a \) and \(b_n \to b \). Then \(a_n + b_n \to a + b \) and \(a_n \cdot b_n \to a \cdot b \).

iii) Suppose \(a_n \to a \), \(a \neq 0 \), and \(\forall n, \ a_n \neq 0 \). Then \(\frac{1}{a_n} \to \frac{1}{a} \).

iv) Squeeze Theorem: If \(a_n \to L \), \(b_n \to L \), and \(a_n \leq w_n \leq b_n \) for each \(n \), then \(w_n \to L \).
Nested Intervals Theorem: Suppose \(\{[a_n, b_n]\} \) is a sequence of closed intervals such that for each \(n \), \([a_{n+1}, b_{n+1}] \subseteq [a_n, b_n] \). Then the intersection of all of these intervals is either a closed interval or a single point.

Theorem (Bolzano-Weierstrass): Every bounded sequence has a convergent subsequence.

Definition: A sequence \(\{a_n\} \) is said to be a Cauchy sequence if for each \(\varepsilon > 0 \), there exists \(M > 0 \) such that if \(i > M \), \(j > M \) then \(|a_i - a_j| < \varepsilon \).

Theorem: A sequence \(\{a_n\} \) converges if and only if it is a Cauchy sequence.