Definition. A sequence \(\{a_n\} \) is said to be a Cauchy sequence if for each \(\epsilon > 0 \), there exists \(N > 0 \) such that \(|a_n - a_m| < \epsilon \) whenever \(n, m > N \).

Theorem. Every Cauchy sequence of real numbers is bounded.

Proof.

Let \(\{a_n\} \) be a Cauchy sequence. Let \(\epsilon = 1776 \). There exists \(N > 0 \) such that \(|a_n - a_m| < \epsilon \) whenever \(n, m > N \). Let \(k > N \). If \(n > k \), then \(|a_n - a_k| < 1776 \). That is, if \(n > k \), \(a - 1776 < a_n < a_k + 1776 \). It also follows that \(|a_n| < \max\{|a_k + 1776|, |a_k - 1776|\} \) for \(n > k \).

Let \(B = \max\{|a_1|, |a_2|, ..., |a_k|, |a_k + 1776|, |a_k - 1776|\} \). Since \(|a_n| \leq B \) for all \(n \), \(B \) is a bound for the sequence \(\{a_n\} \).

Theorem. A sequence \(\{a_n\} \) is a convergent sequence if and only if it is a Cauchy sequence.