Solving Applied Problems

1. Understand.
2. Choose variable (variables).
3. Obtain a mathematical representation of the problem.
4. Do the math.
5. Interpret your results.

A small cruise ship that can hold up to 60 people provides three-day excursions to groups of 40 or more. If the group contains 40 people, each person pays $\$ 70$. The cost per person for all members of the party is reduced by $\$ 1$ for each person in excess of 40 . Find the size of the group that maximizes income.

Let $x=$ number of additonal people, $1 \leq x \leq 20$. Now $40+x=$ total number of passengers.
Then $70-x=$ ticket price per passenger.
The income or total revenue is $R(x)=(40+x)(70-x)$.
Find the value of x for which the function $R(x)$ is a maximum.
The function $R(x)=(40+x)(70-x)=-x^{2}+30 x+2800$ is a quadratic function.
Recall that a quadratic function $f(x)=a x^{2}+b x+c$ has a maximum value when $a<0$ and $x=\frac{-b}{2 a}$.
The function $R(x)=(40+x)(70-x)=-x^{2}+30 x+2800$ is a maximum when $x=15$.
A group size of 55 people will maximize income.

