Find all of the zeros, real and imaginary, of the function $p(x)=x^{3}-5 x-2$.

Find all possible rational zeros: $\frac{\text { factors of }-2}{\text { factors of } 1}$
Possible rational zeros: $\pm 2, \pm 1$

$$
\begin{array}{ll}
p(1)=-6 & p(-1)=2 \\
p(2)=-4 & p(-2)=0
\end{array}
$$

If -2 is a zero of $x^{3}-5 x-2$ then $x+2$ is a factor of $x^{3}-5 x-2$.

$$
x^{3}-5 x-2=(x+2)\left(x-c_{2}\right)\left(x-c_{3}\right)
$$

$$
x^{3}-5 x-2=(x+2)\left(x-c_{2}\right)\left(x-c_{3}\right)
$$

Divide $x^{3}-5 x-2$ by $x+2$

$$
\begin{array}{r|rrrr}
-2 & \begin{array}{rrrr}
1 & 0 & -5 & -2 \\
& & -2 & 4
\end{array} & 2 \\
& & & & \\
\hline 1 & -2 & -1 & \mathbf{0}
\end{array}
$$

$$
x^{3}-5 x-2=(x+2)\left(x^{2}-2 x-1\right)
$$

Find the zeros of the quadratic factor

$$
x^{2}-2 x-1=0
$$

Find the zeros of the quadratic factor

$$
\begin{gathered}
x^{2}-2 x-1=0 \\
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)}=\frac{2 \pm \sqrt{8}}{2}=\frac{2 \pm 2 \sqrt{2}}{2} \\
1-\sqrt{2} \text { or } 1+\sqrt{2}
\end{gathered}
$$

$$
\text { zeros of } x^{3}-5 x-2:\{-2,1-\sqrt{2}, 1+\sqrt{2}\}
$$

$$
x^{3}-5 x-2=(x+2)(x-(1-\sqrt{2})(x-(1+\sqrt{2}))
$$

