
Spatiotemporal Models in Ecology:
An Introduction to Integro-Difference Equations

James Powell∗

Department of Mathematics and Statistics
Utah State University

April 21, 2009

∗jim.powell@usu.edu

CONTENTS 2

Contents

Approximate Class Syllabus 2009 5

Wednesday, 6 May . 5

Thursday, 7 May . 5

Monday, 11 May . 5

Wednesday, 13 May . 6

Thursday, 14 May . 6

1 Introducing MATLAB 7

1.1 Goals . 7

1.2 Introduction to the Software . 7

1.2.1 Matrices and Basic Operations . 7

1.2.2 Introducing the Help Facilities . 8

EXERCISE1 Using Help . 8

1.2.3 Defining One-Dimensional Functions and Graphing . 9

EXERCISE2 Plotting the diffusion equation’s fundamental solution. 9

1.2.4 Scalar Functions of Two Variables . 10

EXERCISE3 Surface plot of the wave equation. 11

1.2.5 Basic Logical Functions . 11

EXERCISE4 Truncating the diffusion-loss model. 12

1.2.6 Learning about Matrix Manipulation and Fourier Transforms using the Demos 13

EXERCISE5 Stability of Nicholson-Bailey . 13

2 Dispersal 15

2.1 Goals . 15

2.2 Probability and Dispersal in One Space Dimension . 15

2.2.1 Dispersal via Random Walks and the Diffusion Equation . 15

2.2.2 Convolutions and Fourier Transforms . 16

2.2.3 Numerical FFT . 16

2.2.4 Matlab Implementation . 17

EXERCISE6 Diffusive dispersal of a ‘tent’ function. 18

2.2.5 Dispersal and Settling with a Localized Source . 18

EXERCISE7 Distribution from diffusion and settling. 18

2.2.6 Ballistic Dispersal . 18

2.2.7 Movement at Constant Speed from a Source and Settling . 20

EXERCISE8 Advection and settling. 20

2.3 Probability and Dispersal in Two Space Dimensions . 20

2.3.1 Dispersal via Random Walks in Two Dimensions . 21

EXERCISE9 Diffusion in two dimensions. 21

2.3.2 Modal Dispersal in Two Dimensions . 22

EXERCISE10 Advection-diffusion in two dimensions. 22

EXERCISE11 Random winds . 22

2.3.3 Turchin’s Model for Prey-Taxis . 22

CONTENTS 3

EXERCISE12 Prey-taxis (differential motility I) . 24

EXERCISE13 Prey-taxis (differential motility II) . 25

3 Implementing an Integro-Difference Model 26

3.1 Goals . 26

3.2 Enhanced Nicholson-Bailey Model . 26

EXERCISE14 Iterations of the Nicholson-Bailey (nonspatial) model. 27

3.3 Matlab Implementation of a Simple IDE . 27

EXERCISE15 Iterating linear dispersal and reproduction. 29

3.4 An Integro-Difference Approach to Nicholson-Bailey . 29

3.4.1 Description of IDE for Enhanced Nicholson Bailey . 29

3.4.2 Matlab Implementation . 31

EXERCISE16 Nicholson-Bailey in space. 33

EXERCISE17 Logistic equation in space. 34

3.5 Spatially Structured Environments . 34

EXERCISE18 Spatial heterogeneity – crop structure. 34

EXERCISE19 Spatial heterogeneity – parasite efficiency. 34

EXERCISE20 Spatially correlated random environment –rockies 35

EXERCISE21 Random carrying capacities in ENB. 35

4 Boundaries, Chemotaxis and Student Case Studies 37

4.1 Goals . 37

4.2 Reflecting and Absorbing Boundary Conditions . 37

4.2.1 The Wall of Doom . 37

EXERCISE22 Implementing lethal boundaries. 39

4.2.2 Reflecting Boundaries . 40

EXERCISE23 Reflecting (solid) boundaries. 40

4.2.3 Mixed Boundaries . 40

4.2.4 Boundary Conditions in Two Dimensions . 41

EXERCISE24 Two-dimensional boundary conditions. 42

EXERCISE25 Watching the reflections. 42

4.3 A Model for Chemo-Taxis . 42

EXERCISE26 Chemo-taxiśa laPowell . 45

EXERCISE27 Chemo-taxis in 2D . 45

Class References 46

CONTENTS 4

Additional Material Included in Reader

• Portions of Getting Started withMATLAB . (yellow)

• Allen, J.C., C.C. Brewster and D.H. Slone, 2001. “Spatially explicit ecological models: a spatial convolution
approach,”Chaos, Solitons and Fractals12: 333–347. (white)

• Andersen, M. 1991. “Properties of some density-dependent integrodifference equation population models,”
Mathematical Biosciences104: 135-157. (pink)

• Edelstein-Keshet, L. 1998.Mathematical Models in BiologyRandom House/Birkḧauser Mathematics Series,
NY, pp. 78-89. (white)

• Holmes, E.E., M.A. Lewis, J.E. Banks and R.R. Veit, 1994. “Partial differential equations in ecology: spatial
interactions and population dynamics,”Ecology75: 17-29 (from the special issueSpace, the Final Frontier for
Theoretical Ecology). (pink)

• Kot, M.A. Lewis and P. v.d. Driessche, 1996. Dispersal data and the spread of invading organisms.Ecology
77: 2027–2042. (white)

• Neubert, M.G., M. Kot and M.A. Lewis, 1995. “Dispersal and pattern formation in a discrete time predator-prey
model,”Theoretical Population Biology48: 7–43. (pink)

• Powell, J.A. and N.E. Zimmermann, 2004. “Multi-Scale Analysis of Active Seed Dispersal Contributes to
Resolving Reid’s Paradox,”Ecology85:490-506. (white)

• Powell, J.A., T. McMillen and P. White, 1998. “Connecting a Chemotactic Model for Mass Attack to a Rapid
Integro-Difference Emulation Strategy,”SIAM Journal of Applied Mathematics59: 547-572. (pink)

5

Approximate Class Syllabus 2009

First Day, Wednesday, 6 May

09:00 Class introduction. Spatial modelling survey and introduction to mathematical modelling concepts
involving space.

10:15 Coffee!

10:30 Qualitative behavior and derivation of some important spatial and temporal models.

11:45 Lunch!

13:00 Computer Lab 1: Introduction toMATLAB including operations, variables, matrices, plotting and
graphics, help and documentation.

14:30 Coffee!

16:30 End of computer lab.

Second Day, Thursday, 7 May

09:00 Discussion of random walks and the diffusion equation. Gaussian dispersal, use of Fourier Trans-
forms to solve the diffusion equation, introduction to Discrete and Fast Fourier Transforms as numer-
ical tools.

10:15 Coffee!

10:30 Examples of dispersal kernels: drift-diffusion (advection-diffusion), diffusion and settling, ‘get out
of here’ diffusion, ballistic dispersal, prey-taxis and differential motility.

11:45 Lunch!

13:00 Computer Lab 2: UsingMATLAB and FFT to simulate dispersal in one and two dimensions.

14:30 Coffee!

16:30 End of computer lab.

Third Day, Monday, 11 May

09:00 Disscussion on implementing integro-difference models: presentation and discussion of several lit-
erature case-studies. Spread of plants, Allee effects, host-parasite dynamics in space, seed shadows,
splash-dispersal of fungi, fungal pandemics, outbreaks of tree-killing beetles,Drosophila in apple
orchards

10:15 Coffee!

10:30 Groups organize case studies. Define phenomena to model, questions to answer, formulate models
for discrete and dispersal dynamics, discuss parameterization, divide work responsibilities.

11:45 Lunch!

13:00 Computer Lab 3: Implementing IDE inMATLAB and simulating prey-taxis.

14:30 Coffee!

16:30 Group work on case-studies if time permits. End of computer lab.

6

Fourth Day, Wednesday, 13 May

09:00 More case studies of IDE. Discussion of theory of how to implement boundary conditions (reflecting
(solid), absorbing (lethal)) using dispersal technology.

10:15 Coffee!

10:30 Modelling chemotaxis, implementation of chemotactic model using IDE approaches. Brief discus-
sion with case study groups.

11:45 Lunch!

13:00 Computer Lab 4: Reflecting and absorbing boundaries in one and two dimensions, the Powell ap-
proach to chemotaxis.

14:30 Coffee!

16:30 Group work on case-studies if time permits. End of computer lab.

Fifth Day, Thursday, 14 May

09:00 Answer last questions, finish whatever discussion has not been finished.Presentation of Case Stud-
iesby groups.

10:15 Coffee!

10:30 More presentation of Case Studies

11:45 Lunch andEven more presentation of Case Studies

Whenever End of class. Beer for the teacher!

1 INTRODUCINGMATLAB 7

1 Introducing MATLAB

1.1 Goals

The goals of this lab are to introduce students to importantMATLAB commands and philosophies, including:

• Basic graphical operations for plotting data in one and two dimensions.

• Defining grids.

• MATLAB ’s Help facility.

• Special mathematical and logical functions.

• Matrix manipulations (Demos).

• Implementing the Fast Fourier Transform (FFT) inMATLAB (Demos).

MATLAB is built around matrix and vector manipulation, and views everything as vectors or matrices or
tensors. It is not a symbolic program, and performs no analytic calculations, but is composed of computa-
tionally optimized linear algebra routines for performing operations on and to matrices and vectors.

1.2 Introduction to the Software

1.2.1 Matrices and Basic Operations

TheMATLAB program was based originally on a set of computational routines for doing linear algebra, and
retains a linear algebra bias in its operations. To define the matrix

A =

1 2 3
4 5 6
7 8 9

in MATLAB use the command

A = [1 2 3; 4 5 6; 7 8 9]

Thecolumnvector~c = (1, 2, 7)T androw vector~r = (2, 4, 6) can be defined

c = [1; 2; 7]
r = [2 4 6]

Notice that adding a semicolon (;) adds to the number of rows (making the columns longer. To multiply
the matrixA on the left by the row vector~r use theMATLAB commandr * A; to multiply the column vector
~c on the left byA use theMATLAB commandA* c . Now, try these backward and see the error message
whenMATLAB tries to multiply matrices of incompatible sizes!

MATLAB is a great program for doing matrix operations. For example, to find the eigenvalues ofA use
the command

eig(A)

Type thehelp command,help eig , to see what else theeig command is capable of inMATLAB . In
particular notice that the command

1 INTRODUCINGMATLAB 8

[V,D]=eig(A)

returns the eigenvalues ofA as columns in the matrixV. You should have noticed that one of the eigenvalues
of A is zero; this is because the matrixA is singular, that is, the rows are dependent. (In this case, if you
take twice the second row and subtract the first, you get exactly the third.) You could determine this using
by-hand row-reduction, but for giggles try the following command to get the reduced echelon form ofA:

rref(A)

1.2.2 Introducing the Help Facilities

Help documentation is available at the MathWorks Web site

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml

Open a Web browser and link to the documentation at MathWorks to support this Lab exercise. The ‘Getting
Started’ guide should be there in the left hand column; click on this and then click on ‘Matrices and Arrays’
in the right hand frame to see some of the supporting examples. If you want to expand your knowledge of
MATLAB you may want to work through some of these examples.

Take some time now to work through the Matrix Manipulation section of the Getting Started guide. In
particular, familiarize yourself with the following types of operations:

• Refer to the matrix element in the second row and third column usingA(2,3)) .

• Refer to the entire second column using the ‘:’ to denote ‘all possible values’ as in the command
A(:,2) . To refer to the entire first row you would useA(1,:) .

• Usesum to sum along columns of a matrix. How could you sum along rows?

You may also want to check out some of theMATLAB demos. Click on the Help menu and then click
on Demos. In the left hand menu of the window that appears click on Matrices and then on Basic matrix
operations in the right hand menu. This will generate a slide show which will lead you through several of
the basicMATLAB matrix and plotting commands.

ShortcutsThere are a couple of nice shortcuts inMATLAB that make things go much quicker. One of them
is the↑ key. This brings back commands that you have typed previously, which can then be edited on the
command line. Try using↑ and see what happens. Also, you can use↑ to search for the last command that
begins with certain letters. So, for example, to see the last command you typed in which begins withA =
type ‘A =’ on the command line and then hit the↑ key.

Another shortcut: Often you do not want to see the output of a command, particularly when it is a long
vector or big matrix. To suppress output, follow theMATLAB command with a semicolon.

Note: At any time during aMATLAB session you may typehelp COMMAND for MATLAB ’s internal
information on howCOMMAND may be used, including examples.If you do not know what command
you are looking for, you may typelookfor SUBJECT to getMATLAB to search for commands which refer
to your SUBJECT.

EXERCISE1: Type

help linspace

and after reading aboutlinspacetype

1 INTRODUCINGMATLAB 9

lookfor space

to see what other relevant commands there might be.

1.2.3 Defining One-Dimensional Functions and Graphing

Let’s begin by graphing some familiar one-dimensional functions usingMATLAB . The first step is to make
a vector corresponding to the real axis, say between -5 and 5:

x = linspace(-5,5,101);

The above command generates a vector with 101 components, namedx , whose elements are evenly spaced
numbers beginning at -5 and ending at 5. The semicolon (;) suppresses output – try the command without it
and see what happens! Notice also that we get a spacing of∆x = 1/10 using the above command – the 101
allows us to have the endpoints included in the vector of coordinates.

Now define a function,f(x) = sin(x2)/(1 + x2), which we will then plot. The functionf will be a
vector, f , which contains for every component of the coordinate vector,x , a value according to the rule
f(x):

f = sin(x.ˆ2)./(1 + x.ˆ2);

The notation ‘.’ before an operation means to apply the operation element-by-element to an array; thus

x.ˆ2

means the element by element square ofx , or a vector of length 101 with valuesx2 for x between -5
and 5 (Look in theGetting Started withMATLAB materials for more information on how basic arithmetic
operations are implemented). Now, to plotf issue theMATLAB command

plot(x,f)

which will plot the ordered pairs given byx, f . Try changing the order ofx and f above to see what
happens.

Now, to see how to put multiple plots on one graph and change some of the styles, try the following:

plot(x,f,’r * ’)
hold on, plot(x,1./(1+x.ˆ2),’g’), hold off
xlabel(’x’),ylabel(’f(x)’),title(’Function and Envelope’)

The ‘hold’ commands forceMATLAB to draw plots without erasing previous plots. One may also plot
several functions simultaneously, as in

figure(2)
plot(x,cos(x),’r’,x,exp(-abs(x)),’b’,x,sin(x.ˆ2),’g’)

Now, just to see what some of the options would be, type

help plot

which will give you a number of examples, sets of options, and some suggestions for other commands you
might find useful. Try some of these just to get the hang of it.

1 INTRODUCINGMATLAB 10

EXERCISE2: Plot the fundamental solution of the heat equation,

ut = Duxx, u(x, 0) = δ(x)

which has the form

F (x, t) =
1√

4πDt
exp

[
− x2

4Dt

]
,

for the followingt values: 1, 2, 4. Plot all on the same set of axes, over an interval from -10 to 10, for aD
value of .37, and organize the time slices in the colors of theMATLAB spectrum (’r’,’y’,’g’,’b’,’m’). Label
the axes and give the plot a title. Thelegend command allows you to label the different graphs – use
help and check it out!

1.2.4 Scalar Functions of Two Variables

Defining functions of two variables works with the same philosophy inMATLAB , except that the underlying
substrate of independent variables becomes a matrix as opposed to a vector. Let’s begin by defining two
coordinates,x andy and then a two-dimensionally extended version of these coordinates:

x = .1 * [0:100];
y = .05 * [-50:50];
[X,Y] = meshgrid(x, y);

(Notice the scalar multiplication of a spacing, either .1 or .05 above, and an array of numbers,[N1:N2] ,
which is all of the integers betweenN1 andN2, inclusive. Thus,x = .1 * [0:100] is equivalent tox
= linspace(0,10,101).). Now we may define a function of these two variables analogously to the
one-dimensional procedure. For example, to plot the function

g(x, y) =
sin(x2 + πy)
1 + x2 + y2

,

as a surface, we could use the sequence of commands

g = sin(X.ˆ2 + pi * Y)./(1 + X.ˆ2 + Y.ˆ2);
surf(X, Y, g)

Can you tell which is thex and which they direction? Now let’s change the location of the grid. Use the
up arrow,↑, to access previous commands; to access the previous command starting with ‘x=’ type ‘x=’
on the command line and then hit↑. Now you can use the back(←) and right(→) to move through the
previous command. Typing a character will insert it; backspace removes it. Call up the previous command
defining the grid forx and modify it so thatx is now an array corresponding to coordinates beginning at -5,
extending to +5, and with a grid spacing(∆x) of .1. Recreate the meshgrid forX, Y, redefine the matrixg
whose values are given by the rule above, and plot the result using

surf(X,Y,g),shading flat

Theshading flat option removes the grid lines and shades each portion of the graph as a flat polygon. You
can change the color mappings by trying things likecolormap hot, and on a computer screen things are
more striking if you issue the commandwhitebg(’k’) (which makes the background color black, or’k’).
To see a particular slice of the graph, that is a section in either thex or y direction, you can plot a particular
row or column ofg. For example, to plot a cross section in thex direction, withy = −2.5, type

1 INTRODUCINGMATLAB 11

figure(2), plot(x, g(1,:))

The colon (:) in the second argment of g says ‘all available indices,’ and in this case ‘g(1,:) ’ means
‘From the matrixg take the first row and all columns,’ which is, of course the vector containing samples
taken fromg in thex direction at the smallesty value (which has index 1). Usehold on, hold off to plot
some other cross sections of the function until you feel comfortable with which indices correspond to which
variables.

Now let’s plot contours and densities in another window. Try

figure(3), pcolor(X,Y,g), shading flat, colormap hot

This will create a new figure, put a density plot ofg in it, and color-code the densities in such a way that
lower values are dark (cool) and higher densities are white (hot). It is possible to super-pose contours on
this graph:

hold on, contour(X,Y,g,’b’), hold off

This will place 20 aesthetically chosen contours in blue on the color density plot.

EXERCISE3: The function

u(x, t) =
1
2

[
exp

(
−(x− 2t)2

)
+ exp

(
−(x + 2t)2

)]

is a solution to the wave equation,utt = 4uxx, which models, among other things, waves on the surface of
a canal, in this case moving at speed 2 in either direction. Define a meshgrid int andx which will allow
you to visualize this solution for times between 0 and 4. Use surface plots, density plots, and contours to
visualize the behavior of this solution. Also, in a third figure plot a ‘waterfall’ diagram, that is several slices
in constant time, varyingx , which will illustrate the evolution of the function. Use times 0,1,2,3,4 and
color-code the slices in some way so that you know which slice is which.

1.2.5 Basic Logical Functions

One of the nice features ofMATLAB is the existence of logical matrices, which are just arrays with elements
that are either zero or one depending on whether a statement is true or false. Let’s return tox andf given in
the first section above. Re-input these intoMATLAB (remember↑!) and now let’s manipulate using logical
matrices. For example, suppose that we would like to plotonly the positive portions of f. Define

fplus=(f>=0);

The arrayfplus is exactly as long asf (that is 101 elements) but contains zeros where f<0 and ones where
f≥0. To plotf in yellow and only its postive part in little red circles,

plot(x, f, ’y’, x, fplus. * f, ’ro’)

By multiplying f and fplus element by element we have created a new entity which is the positive part off
wheref is positive and zero wheref is negative. If we wanted to show the negative part off in little blue
triangles on the same graph, we could

hold on, plot(x, (1-fplus). * f,’bˆ’),hold off

1 INTRODUCINGMATLAB 12

These logical matrices can also be used to create piece-wise functions, which we will see next.

Suppose you wanted to make a functionp which was Gaussian for two standard deviations (2σ), and
then uniform (with valuep(2σ)) for two standard deviations, and then zero, and then that you wanted to
re-normalize it so that the resulting function still represented a probability density function (pdf). Pick a
standard deviation of .5; a normal pdf with standard deviation .5 is given by

N =
√

2
π

e−2x2
.

First let’s define the space and normal vectors:

x = 6/100 * [-50:50];
N = sqrt(2/pi) * exp(-2 * x.ˆ2);

Now we need logical matrices for the different portions of the pdf we are building. These we will call
‘norm ’ and ‘uni ,’

norm=(abs(x)<=1);
uni=(abs(x)>1 & abs(x)<=2);

The MATLAB commandabs(x) returns the absolute value ofx ; the statement ‘(abs(x)<=1) ’ tests
whether or not the absolute value ofx is smaller or equal to 1, returning the value ‘1’ if it is, and ‘0’ if
it is not. The arraysnorm anduni will thus contain only ones where the pdf will be normal and then
uniform, respectively. Now we can create a vector,pdf , which will have the proper shape but will not have
unit integral:

pdf=N. * norm + sqrt(2/pi) * exp(-2) * uni;

You should plot this to see that it is correct. Finally we must normalize. We have defined a grid with spacing
6/100=.06, so a quick approximation of the actual integral would be

mass=.06 * sum(pdf)

The commandsum adds up all the elements of a vector input, so that the above is equivalent to a simple
Reimann-sum approximation to the integral. A better approximation would come from the trapezoid rule

mass=.06 * trapz(pdf)

which sums theaveragevalue in each cell. Now we can normalize,

pdf=pdf/mass;

Now plot this. You can use up-arrows to just find the command you used last time, or you can compare it to
the previous (unnormalized) function by usinghold on andhold off.

EXERCISE4: A function which we will see again in dispersal is the steady-state solution to the diffusion-
loss model with a localized source at the origin,

ut = Duxx − λu + αδ(x),

the steady-state (t →∞) solution of which is

F (x) =
α

2
√

Dλ
exp

−

√
λ

D
|x|

 .

1 INTRODUCINGMATLAB 13

Unfortunately this predicts a small, but perceptible presence of a diffusing particle infinitely far away from
the origin. One way to address this would be to chop off the functionF at some realistic point and then
normalize the resulting function. Letα = 1, λ = 4 andD = 1 and truncate the functionF at 50, 25, and
10 percent of its peak value, then re-normalize so that the resulting function is a pdf. On a single graph,
compare these three pdfs to a (normalized) version of the original function.

1.2.6 Learning about Matrix Manipulation and Fourier Transforms using the Demos

Now that you have aMATLAB basis, you might find it useful to tour through some ofMATLAB ’s capabilities
usingdemos. The demos are a set of GUI slide shows which illustrate variousMATLAB functions. So, on
the command line type

demo

and a window should pop up on screen with a variety ofMATLAB subjects. To get comfortable with the
demos and see some of howMATLAB handles linear algebra click onMatlab and thenMathematics in
the left hand window, followed byBasic matrix operations in the right hand window. If you now click on
“Run in the Command Window” a slideshow begins running in the command window to illustrate various
MATLAB matrix operations, which are useful to know. You can actually fool around with the commands
appearing in the slide show in your command window to see how they work, which is a good way to learn.

EXERCISE5: The Nicholson-Bailey model for host-parasite interactions is

Nt+1 = λNte
−aPt

def= F (Nt, Pt),

Pt+1 = cNt

(
1− e−aPt

)
def= G(Nt, Pt).

The steady state corresponding to coexistence of host and parasite in this model is given by

P ∗ =
ln(λ)

a
N∗ =

λ ln(λ)
ac(λ− 1)

.

The Jacobian matrix (found by hand, notMATLAB !) is

(
FN (P ∗, N∗) FP (P ∗, N∗)
GN (P ∗, N∗) GP (P ∗, N∗)

)
=

(
λe−aP ∗ −aN∗λe−aP ∗

c
(
1− e−aP ∗

)
acN∗e−aP ∗

)
.

Show that whena = 0.068, c = 1, λ = 2 (corresponding to the interaction between a greenhouse whitefly
and its chalcid parasitoid) that the steady state is unstable. At the very least you will need to take the
eigenvalues of a 2x2 matrix and to see if any of these eigenvalues have magnitude greater than one. Can
you think of a way to plot a stability diagram inλ which will illustrate that these equilibrium populations
areneverstable?

Now let’s have a look at using the FFT (or Fast Fourier Transform) inMATLAB . To begin with, click
Using FFT in MATLAB in the left-hand window and thenRun in Command Window in the upper right
hand corner. You can now page through slides which illustrate how one can use the FFT to analyze sunspot
data.I suggest typing

help fft

1 INTRODUCINGMATLAB 14

first to get a idea of what the FFT is all about, if you have never used Fourier transforms for data analysis.
We will be using FFTs a lot, so don’t despair if these seem a little cryptic just now. Remember, if you want
to see what any of the component commands in the demo do, you can always typehelp SUBJECT in the
command window and it will almost certainly give you either no information or more information than you
really need.

Congratulations! You have ‘jumped in the deep end’ withMATLAB , but you didn’t sink!

2 DISPERSAL 15

2 Dispersal

2.1 Goals

During this lab students will useMATLAB to become familiar with methodology for simulating the proba-
bilistic dispersal of organisms using FFTs (Fast Fourier Transforms). In particular, students will:

• Visualize and understand a variety of dispersal kernels in one and two dimensions.

• Be aware of the relationship between probability kernels and special solutions to partial differential
equations (PDE).

• Use FFTs and convolution to implement population dispersal models.

• UseMATLAB ‘M’ files to simplify simulations.

2.2 Probability and Dispersal in One Space Dimension

2.2.1 Dispersal via Random Walks and the Diffusion Equation

Many of the basic probability kernels associated with population dispersal find their basis in partial differ-
ential equations. For example, the normal distribution is associated with the diffusion equation

ut = Duxx.

The diffusion equation, among other things, models the probability (u) of finding an individual near any
spatial locus (x) at some timet, given that the individual is moving by taking randomly chosen steps of size
λ to the left or right at a rate of one step per time intervalτ . The step size and time interval occur in the
diffusion equation as

D =
λ2

2τ
.

For the dispersal of a population, the important solution to the diffusion equation is the one which begins
with a perfectly localized individual at the pointx = 0 (in math we know this as theDirac delta func-
tion, δ(x)), so that the initial condition isu(x, 0) = δ(x). The corresponding solution,KD, is called the
fundamental solution and has the form

KD(x, t) =
1√

4πDt
exp

[
−x2

4Dt

]
.

This function can be interpreted as the pdf associated with the location of an individual at timet, moving
under random walks, which was initially located atx = 0.

Now, suppose a population of organisms is dispersed over space with an initial density ofP (x, 0). One
can think of the number of individuals located in a small interval of sizedy at a locationy asP (y, 0) dy.
These indidviduals disperse randomly according to the distributionKD; thus, their probabilistic location at
a later time will be

P (y, 0) KD(x− y, t) dy,

where the dispersal kernel has had its argument shifted so that it is now centered at the original locus of
individuals (x = y). The total population after a timet would then be the sum over all such infinitesimal
intervals containing populations:

P (x, t) =
∫ ∞

−∞
P (y, 0) KD(x− y, t) dy

def= P (x, 0) ∗K(x, t).

This latter operation is called theconvolutionand is defined by the preceding integral.

2 DISPERSAL 16

2.2.2 Convolutions and Fourier Transforms

The Fourier Transform of a function defined on an interval from−∞ to∞ is

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx.

The transformed function̂f(k) can be thought of as the amount of ‘energy’ the function has stored in the
‘wave’ eikx = cos(kx) + i sin(kx). A convenient property of the Fourier Tranform (FT) is that the FT of
the convolution is the product of the FTs,

f̂ ∗ g(k) =
1
2π

f̂(k)ĝ(k).

Consequently, a slick analytic way to evaluate a convolution without actually doing the nasty integral is:

1. Calculate the FT off andg.

2. In wave space, evaluate the product off̂(k) andĝ(k).

3. f̂ ∗ g(k) = 1
2π f̂(k)ĝ(k).

4. Invert the transform off̂ ∗ g to obtainf ∗ g.

A significant difficulty is that FTs are not all that easy to calculate or invert. Fortunately, there is a very
simple computational routine, called the Fast Fourier Transform (FFT) which will perform these operations
numerically.

2.2.3 Numerical FFT

The numerical (or Discrete) Fourier Transform (DFT) is defined with summations instead of integrals,

f̂k =
N/2∑

j=−N/2

f(j∆x)e2πikj∆x,

where the functionf is thought of as being defined on the interval fromx = 0 to x = 1, chopped up into
N chunks of length∆x. If N is a power of two, (that isN = 2m = 2, 4, 8, 16, 32, 64, 128, · · ·) there is
an efficient numerical algorithm for calculating the DFT, called the FFT. One curiosity of the FFT is that
(depending on the implementation) it generates a factor ofN in the output, that is, for inputf(j∆x) it gives
outputNf̂k instead of simplyf̂k. This happens because one of the computational efficiencies of the FFT is
that all the operations involve rational numbers with denominatorN . MATLAB therefore multiplies byN
to take advantage of integer arithmetic. Consequently, the FFT of a convolution of two functions defined on
the intervalx ∈ [0, 1] is

f̂ ∗ gk =
1
N

f̂kĝk.

Suppose now we have a population functionp defined on a periodic intervalx ∈ [−L,L], and a dispersal
function,f defined on the same interval. A blueprint for calculating the dispersed populationf ∗p using the
FFT follows:

• Use FFT to calculatêfk andp̂k.

• Calculatef̂ ∗ pk = 2L
N f̂kp̂k. The extra factor of2L allows for a change in the length of the interval

from 1 to2L. As a note of interest, the fraction2L
N is equal to the discrete step size in space,∆x.

• Invert the FFT to arrive atf ∗ p(x).

An added wrinkle is that, although it is theoretically natural to center the interval atx = 0, in discrete terms
this is unnatural. In general ashift has to be performed on the discrete version ofp so that the value ofp at
x = 0 is associated with the first element of a vector, as in the following diagram:

2 DISPERSAL 17

2.2.4 Matlab Implementation

We can use FFTs inMATLAB to calculate convolutions rapidly. Let’s begin by illustrating the procedure for
a population initially localized uniformly between -1 and 1, dispersing over time into a much larger domain.
The FFT assumes periodicity, so if we define a space interval between -10 and 10 with 256 nodes (remember
the FFT is much more efficient for computations involving2m elements), we need to take into account that
the node corresponding to 10 must be left off (the FFT assumes that whatever data might be specified there
is identical with the data atx = −10). So, to define this space:

xlr=10; np=256; dx=2 * xlr/np;
x=dx * [0:np-1]-xlr; % OR, equivalently
x=linspace(-xlr,xlr-dx,np);

The independent variable is now defined. Let’s also define the normal dispersal kernel and the initial popu-
lation:

p0 = (abs(x) <= 1);
t=1; D=1;
K=1/sqrt(4 * pi * D* t) * exp(-x.ˆ2/(4 * D* t));

With the relevant functions defined we can now take the Fourier transform

fp0=fft(p0);
fK=fft(K);

Using the fact that the transform of the convolution is the product of the transforms, we can now evaluate
the convolution:

fp1=fK. * fp0;
p1=dx * fftshift(ifft(fp1));

The vectorp1 now contains the dispersed population after 1 time unit, but there are some weird things
in the command that need explaining. First off, the commandfftshift basically chops a vector in half and
interchanges the first and second halves as blocks. In this context it is necessary because theMATLAB FFT
is built on the assumption that functions are defined on the interval from 0 to 1, as opposed to centered
around 0. Secondly, the factor ofdx . Firstly, for numerical efficiency the FFT multiplies a vector bynp ,
and the inverse FFT divides by that factor. Since we have implemented a product of FFTs, we need to divide
out a factor ofnp . Secondly, numerical FFTs assume that functions are defined on an interval of length 1,
but our function is defined on an interval of length2* xlr , and so the FFT must be scaled by the interval
length. Together, these two conditions are equivalent to multiplying by the step size,dx=2 * xlr/np , which
is convenient from our perspective.

Now let’s see what we have done:

plot(x, p0,’r’, x, p1,’y’)

You should also get a warning about imaginary numbers being ignored. This occurs because the FFT
requires complex numbers, and numerical rounding creates very small imaginary components, even for
perfectly real data fields. The best way to get around this is to take thereal part after convolution, which we
will do in the future. Now it is possible to keep iterating the random dispersal of the population. We can get
the population after the next time step using a single long, crypticMATLAB command:

p2=dx * real(fftshift(ifft(fft(p1). * fK)));

2 DISPERSAL 18

Usehold on to plot this against the previous results. Does it look reasonable? Use the up-arrow (↑) and edit
the previous command, plot, and see the population after dispersal over three time units.

EXERCISE6: UseMATLAB to define the population density function

P (x, 0) =

{
2− 2|x|, −1 ≤ x ≤ 1,
0, |x| > 1,

on the interval from -15 to 15. In a single window plot random dispersal of this population after times of .5, 1,
2, and 4 with diffusion constantD = 2. (Using↑ here will simplify your life!) Usetrapz to approximate the
integral of the population (total number of individuals) and convince yourself that the number of individuals
is being conserved.

2.2.5 Dispersal and Settling with a Localized Source

Another interesting dispersal model involves assuming random motion for propagules (seeds, spores, pollen,
motile larvae) while they are in the medium and then settling onto a substrate at some rateλ. If propagules
are initially released at the pointx = 0 the PDE modelling the density of propagules in the medium is

ut = D uxx − au, u(x, 0) = δ(x).

The deposition of these particles on the ground is tracked by the variablev, which satisfies

vt = av, v(x, 0) = 0.

The long-time (t → ∞) solution forv is a dispersal kernel, and can be written (following Neubert et. al.
1995)

KS(x) =
√

a

4D
exp

[
−

√
a

D
|x|

]
.

The following commands plot this function on the previously definedx interval:

D=1; a=2;
KS=sqrt(.25 * a/D) * exp(-sqrt(a/D) * abs(x));
plot(x,KS,’r’)

Now try plotting KS on the same axes, varying the settling rate,a, to get an idea of how it behaves.

EXERCISE7: For a uniform distribution of sources between -1 and 1 investigate the dispersal of propagules
according to the probability distributionKS given above. On the same set of axes plot the effect of changing
a on the dispersal of the population.

2.2.6 Ballistic Dispersal

A model for ballistic dispersal of spores from ground level in random directions is given by Neubert, Kot
and Lewis, 1995, by

KB =

1

π

√
c4

g2−x2
, |x| ≤ c2

g ,

0, |x| > c2

g .

2 DISPERSAL 19

Herec is the speed at which spores are ejected andg is the gravitational constant. Under the assumption that
every spore germinates and the sporulating adults die each generation, the spread of a population of fungi is
modelled by

Pn+1(x) = Kb ∗ Pn(x),

wheren denotes the generation number andP0(x) denotes the initial distribution of the colony.

We could illustrate the spread of the colony using the commands we have already mastered inMATLAB

, but this is a good place to use an ‘m’ file, which is aMATLAB script which runs a sequence of commands.
In the File menu of theMATLAB command window click onNew and thenM-file. An editor/debugger
window will pop up, in which you can type in a series of commands, save it as an M-file, and then execute
the whole sequence by referring to the M-file. Below appears the text for an M-file modelling this dispersal.

%
% BALLSPORE
%
% a Matlab M-file which models ballistic dispersal of fungi in 1-D
%

pold = pnew; % define initial condition, this step --
% USER MUST DEFINE THE FIRST pnew
% BEFORE RUNNING THIS SCRIPT

KB=1./(pi * sqrt(cˆ4/gˆ2-x.ˆ2)). * (abs(x) <= cˆ2/g);
% define dispersal kernel, taking care that it is zero in
% the right places

KB=KB/trapz(dx * KB);
% this normalizes the probability kernel. Because of
% the singularities at the ends this is an important
% step -- otherwise there will be net loss

fKB=dx * fft(KB);
% Take FFT of dispersal kernel, multiplying by dx to save
% that step later

fpnew = fKB. * fft(pold);
% FFT of new dispersed population

pnew = real(fftshift(ifft(fpnew)));
% new dispersed population

hold on, plot(x,pnew,’r’), hold off
% plot results on current figure

When you have this all typed in to the editor, save the file asballspore.mand click on the command window
to activate it.Make sure that the directory you are in in the command window is the same as the directory
you save the programballspore.m in! Now we must set the initial space up, the parameters, and the
initial colony:

g=980; % cm/sˆ2 for gravity constant
c=50; % cm/s speed of ejection
xlr=15; np=256; dx=2 * xlr/np;

2 DISPERSAL 20

x=-xlr+dx * [0:np-1]; % define independent variable
pnew=(abs(x) <= 1); % initial colony localized between +/-1

Now we can plot the initial population and callballspore, which will plot subsequent dispersed populations
on the same graph. So, in the command window type:

plot(x, pnew,’b’)
ballspore

Now, you can see the evolution of the dispersing population by using↑ to bring back theballspore
command and then carriage return to execute the command.

2.2.7 Movement at Constant Speed from a Source and Settling

If propagules (densityu) move at constant speed to the left and right away from a source and settle at some
rateh(t), the precipitated individuals (densityv) satisfy the following system of PDE (from Neubert et. al.,
1995):

ut = −c sign(x) ux − h(t) u, vt = h(t) u.

If these equations are solved with initial conditionsu(x, 0) = δ(x), v(x, 0) = 0 corresponding to a unit
release of propagules precisely at the origin, the final distribution of settled individuals (KA) satisfies

1
2c

h

(|x|
c

)
exp

[
−

∫ |x|
c

0
h(s) ds

]
.

This solution differs fromKS primarily in that there is no diffusion process operating. Choosingh(t) =
3a3t2 gives an interesting bi-modal solution

KA =
3a3|x|2

2c3
exp

[
−

(
a|x|
c

)3
]

.

(see Neubert et. al. for other choices forh and their consequences). Try plotting this kernel for various
choices ofc and see how it behaves.

EXERCISE8: Under the assumption that every settled propagule becomes a propagule-producing adult,
write an M-file inMATLAB that will allow you to investigate the multi-generational dispersal of an initially-
localized population with dispersal probability given byKA. How would you modify this code to reflect
mortality or non-germination – say only 50% of dispersed individuals survive to become adults? Could you
modify it to have more than one generation producing propagules?

2.3 Probability and Dispersal in Two Space Dimensions

Now we have more than enough understanding to move on to two-dimensional dispersal. Mainly there is
nothing more complicated than in one dimension, except that it can be computationally much more time
consuming and more difficult to visualize. But the computational techniques are identical inMATLAB ,
except that a few commands (mainly the FFT commands) need to be changed to 2-D versions.

2 DISPERSAL 21

2.3.1 Dispersal via Random Walks in Two Dimensions

As in the case of one dimensional random dispersal, dispersal generated by random walks in two dimensions
is modelled by the diffusion equation,

ut = D∇2u = D(uxx + uyy).

The fundamental solution corresponding to initially localized datau(x, y, 0) = δ(x)δ(y) is given by

K2D(x, y, t) =
1

4πDt
exp

[
−x2 + y2

4Dt

]
.

The followingMATLAB commands define space and the dispersal kernel K2D:

xlr=10; ylr=10; np=128; dx=2 * xlr/np; dy=2 * ylr/np;
x=linspace(-xlr,xlr-dx,np);
y=linspace(-ylr,ylr-dy,np);
[X,Y]=meshgrid(x,y);
t=1; D=1;
K2D=1/(4 * pi * D* t) * exp(-(X.ˆ2+Y.ˆ2)./(4 * D* t));

You may wish to take a second and visualize this usingsurf or pcolor andshading flat or shading interp.
Now, to see how a population initially localized in the rectangle(−1 ≤ y ≤ 1)× (−3 ≤ x ≤ 3) disperses,
use:

p0 = (abs(X)<=3 & abs(Y)<= 1);
fp0 = fft2(p0);
fK2D = dx * dy * fft2(K2D);
fp1 = fp0. * fK2D;
p1 = real(fftshift(ifft2(fp1)));

Some things to observe: the overall format for implementing dispersal is the same as in one dimension, with
the exceptions thatfft andifft are replaced byfft2 andifft2 ; there is now a multiplication by both
dx anddy to implement the convolution. To visualize how the initial field relates to the dispersed field we
will use a combination of graphics – one choice would be contours for the initial field and density plots for
the dispersed field, as in:

pcolor(X,Y,p1),shading flat, hold on, contour(X,Y,p0,’m’), hold off

You may want to further use the optionsaxis squareandcolormap hot. Thehot colormap, in particular,
is useful in interpreting density plots, since it gives a clear indication of high and low values. To see which
colors correspond to which values, you may also use the commandcolorbar, which will add a color scale
with associated scalar values. You might also want to try a combination surface/contour plot, as in

surf(X,Y,p1+1), shading flat
hold on, contour(X,Y,p0,’m’), caxis(’manual’), hold off

Thecaxis command controls how colors are scaled; including the’manual’ option keeps the contour
plot from messing up the beautiful colormap ofsurf. For most applications I find it easiest to use combina-
tions of density and contour plots.

EXERCISE9: Disperse this population for one more time step, savingp1 and creating a new, twice-
dispersed population,p2 . Plot all three populations on a single graph using contours in two different colors

2 DISPERSAL 22

for p0 andp1 and a hot-colored density plot for p2. Usedx * dy * trapz(trapz(p2)) to estimate the
double integral ofp2 , and then compare that to the previous two dispersal slices to make sure that the
population is being conserved.

2.3.2 Modal Dispersal in Two Dimensions

Well, there were many, many different things to do in one dimension, and as you might guess there are
infinitely many more in two dimensions. We will discover more of these as we go along, but as a parting
shot let’s model a combination of advection and diffusion in two dimensions. Suppose a population is
performing random walks in a medium which moves in a particular direction with velocitiesu andv in the
x andy directions, respectively. Without belaboring the details, it can be shown that an individual initially
localized at the origin disperses with probability

K2A = (x, y, t) =
1

4πDt
exp

[
−(x− ut)2 + (y − vt)2

4Dt

]
.

EXERCISE10: Investigate the advective/diffusive dispersal of a population which is initially localized,
according to the probability kernelK2A. PickD = .25, u = 2, v = 2, and use the command

p0=(abs(X+8) <= .5 & abs(Y+8) <= .5);

to specify the initial population. Define the dispersal kernelK2A in MATLAB using the previous grid, and
using a sequence of commands on a single line disperse this population over one unit of time. Using a
combination of contours and density plots show the population’s progress over three time units of dispersal.
(Alternatively,you may want to write a single M-file to do this.)

EXERCISE11: Build an M-file which will allow you to investigate the behavior of a population in an
advection/diffusion setting withrandom winds. That is, over each period of dispersal (‘day’) the wind
speed is constant, but from day to day the direction will vary randomly.Hint: In MATLAB the command
for generating uniformly distributed random numbers isrand. Visualize a couple of dispersal steps for a
population localized initially uniformly in a disk of radius 1 centered at (0,0). Would it be hard to modify
your program to account for random changes in wind speed as well?

2.3.3 Turchin’s Model for Prey-Taxis

Another characteristic of moving, living things is that they move for a reason, generally to get somewhere or
avoid something. An example would be predators or parasites searching for prey/hosts. Even the simplest
of beings is likely to slow down, that is, to take shorter steps in its random searching motions, when it is in
the presence of prey items. LetV (x, y) be the density of ‘victims’ in space, and letP (x, y, t) be the density
of searchers (predators/parasites). LetD2 be the diffusivity ofP in the absence of victims andD1 < D2 the
diffusivity in the presence of victims. Varyingmotility of the searcher can be modelled (following Turchin,
Reeve, Cronin and Wilkens, 1997) by

µ(V) =
D2(V + d)
d + V D2

D1

= D2

1− (D2 −D1)

V

D2V + dD1︸ ︷︷ ︸
µ̂

 ,

2 DISPERSAL 23

whered is a saturation parameter describing how rapidly motility changes with density of victims. The
function µ̂ can be intepreted as the prey-based perturbation to the ‘normal’ motility of predators in search
mode. A PDE model for the redistribution of searchers in response to the density of victims is

Pt = ∇2 [µ(V)P] .

The idea is that in regions with prey predators slow down (to eat the prey, or at least to hug them and pet
them and stroke their fur the wrong way), while in regions without prey they speed up (searching). Thus,
when a distribution of predators encounters a distribution of prey the predators tend to ‘pile up’ as they slow
down and have more intensive interactions with their victims. In principle this equation is always soluble,
but there is noa priori form of solution that works for all choices ofV . However, anapproximatesolution
with initial conditionP0(x, y) is given by:

P (x, y, t) =
1

4πµ(V)t
·
[(

(1− ˆµ(V))P0(x, y)
)
∗ exp

(
−x2 + y2

4D2t

)]
.

Remember that * denotes the two-dimensional spatial convolution; in this case the entire quantity(1 −
ˆµ(V))P0(x, y) is convolved with a diffusion kernel with diffusion constantD2.

This approximation to solutions of the PDE improves whenµ̂ << D2 (as the diffusivities become
more alike orV is either much smaller than or much greater thandD1

D2
). However, it always has the correct

quantitative behavior, even when its mathematical properties as an approximate solution are unreliable. For
our purposes, as amodel for victim-taxis, the approximation above can serve perfectly well! We must
separate the elements which give the random character of diffusivity from the elements defining the spatial
structure of changing motility in the presence of prey. The approach will be to:

1. pre-multiply by the differential motility,(1 − ˆµ(V), which creates a bias for the resulting ‘motility
potential’ to diffuse into areas whereµ(V) is small,

2. convolve with a random motion kernel with diffusivityD2,

3. divide the dispersed result by the differential motility to convert realized ‘motility potential’ back to
an actual spatial structure of dispersed predators

4. normalize to ensure that predators have neither been created nor destroyed (because the approximate
solution does not conserve the number of predators precisely).

Below appears aMATLAB m-file which implements this model for prey-taxis, assuming an initial population
of prey distributed in a Gaussian oval centered atx = 5 = y,

V (x, y) = 100 exp

[
−(x− 5)2

4
− (y − 5)2

]
,

and a population of predators initially distributed uniformly in a circle of radius 2. In particular, notice the
‘normalization’ step which keeps the predator population from growing or shrinking, and the separation
between the purely random motion (evaluated with convolution) and the pre/post adjustment by a factor of
1-muhat , which gives spatial structure to the taxis.

%
% Testing out Turchin-taxis
%
% Set up space:
%

np=128;

2 DISPERSAL 24

xl=10; dx=2 * xl/np;
x=linspace(-xl,xl-dx,np);
[X,Y]=meshgrid(x,x);

% Define parameters

D2=4; D1=1.5; % the motilities
d=1; t=10; % saturation parameter, time
V=100* exp(-(X-5).ˆ2./4-(Y-5).ˆ2); % these are the victims:

% muhat is (negative) perturbation to the basic motility (D2):
muhat=(D2 - D1) * V./(d * D1 + D2* V);

% Set initial population of predators

P=((X.ˆ2+Y.ˆ2) <= 4);
numP=dxˆ2 * trapz(trapz(P)); % total number predators

% Define dispersal kernel with diffusivity D2

K=1/(4 * pi * D2* t) * exp(-(X.ˆ2+Y.ˆ2)/(4 * D2* t));
fK=dx.ˆ2 * fft2(K);

% Disperse motility potential MP=(1-muhat) * P
MP=(1-muhat). * P;
fMP=fft2(MP);
MPt=real(fftshift(ifft2(fMP. * fK)));

% convert back to actual population from realized motility potential
Pt=MPt./(1-muhat);

% Normalize the dispersed population

numPt=dxˆ2 * trapz(trapz(Pt)); % the number we now have
Pt=numP/numPt * Pt; % convert to number we should have

% Plot the results in comparison with the victims

pcolor(X,Y,Pt), shading interp, colormap hot, axis square
hold on, contour(X,Y,V,’b’), caxis(’manual’), hold off

One difficulty with this sort of approach is that it is not ‘linear’ int, the time step. That is, taking ten steps
with t = 10 could be slightly different than taking five steps witht = 2 or two steps witht = 5. Similarly,
taking one step withD2 = 8 may not be exactly equivalent to taking four steps withD2 = 2. However,
these differences are normally small where the method works at all, and as a model for chemotaxis it has the
correct qualitative behavior, no more or less valid in an absolute sense than the PDE model appearing in the
paper of Turchin et. al. (1997). It is important, though, to remember that there is now an extra ‘parameter’,
t, which must be specified.

EXERCISE12: With the aboveMATLAB code for defining a prey-tactic dispersal kernel, determine how
a population of predators, initially localized nearx = 0 = y, redistributes in response to the population of

2 DISPERSAL 25

victims given above. In two different figures plot the density response of the predators as a density field after
4 and 8 time units of dispersal. Indicate the starting point, and plot contours of the victim field to see how
the taxis orients the population. Check to see that the number of searching individuals is being preserved.
Can you explain these results in terms of decreased motility in the presence of they prey?

EXERCISE13: Write an m-file script which allows you to iterate the prey-tactic model of the dispersal
process above (with time steps of 1 unit) withD2 = 4 in a situation with predators searching for prey
infesting crop rows, as in

V= 10* exp(-(X-4).ˆ2/9-(Y-4).ˆ2/9). * (1-cos(20 * pi/xl * X));

Congratulations! You have learned more about probabilistic dispersal and convolutions inMATLAB than
most people are learn in a life time!

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 26

3 Implementing an Integro-Difference Model

3.1 Goals

In this lab we will learn the philosophy and some of the practicalMATLAB pitfalls associated with imple-
menting an Integro-Difference Equation (IDE) model. An IDE is one natural way to add spatial dynamics
to a temporally discrete model. In this lab you will:

• Learn howMATLAB implements movies and loops.

• Couple dispersal models with discrete-time population dynamics.

• Learn some ways to implement environmental heterogeneity.

• Begin to see some of the unique behaviors associated with spatio-temporal dynamics.

3.2 Enhanced Nicholson-Bailey Model

For purposes of demonstration we will look at version of the Nicholson-Bailey discrete model for the inter-
action between host and parasite species. A nice, detailed account is presented inMathematical Models in
Biology, pp. 79–89, by Leah Edelstein-Keshet. The purely temporal model tracks the population of the host
species,Ht, and the parasite species,Pt as a function of discrete time,t. The Enhanced Nicholson-Bailey
model (ENB) maps current population levels to future population levels according to

Ht+1 = f(Ht, Pt) = Ht exp
[
r

(
1− Ht

K

)
− aPt

]
, (1)

Pt+1 = g(Ht, Pt) = nHt (1− exp[−aPt]) . (2)

The right-hand-side of these equations can be viewed as a product of probabilities of encounter related to the
‘Law’ of Mass Action, that is, the probability of an encounter between host and parasite is proportional to
Ht ·Pt. The probability of a host encountering parasites twice isHt ·P 2

t , and the probability of encountering
n parasites isHt · Pn

t . If a is the per parasite probability of parasitization, the probability of a host being
parasitizing at least once is

aHtPt︸ ︷︷ ︸
1 encounter

+
1
2
a2HtP

2
t

︸ ︷︷ ︸
2 encounters

+
1
6
a3HtP

3
t

︸ ︷︷ ︸
3 encounters

+ · · · = Ht

[
1− e−aPt

]
.

The various fractions1n! occur because theorder of the encounters does not matter. For example, there are
6 = 3! ways for three different parasites to encounter a particular host, but if the order of these encounters
does not matter we need to factor out that3! to get the probability of three order-independent encounters.
Consequently, the right-hand-side (RHS) of2 can be thought of as the expected number of hosts which have
been parasitized at least once times the number of fuzzy baby parasites (n) produced by each successfully
infected host. The productHt exp[−aPt] on the RHS of equation (1) is the expected number ofnon-

parasitizedhosts, which then reproduce with fecundity based on the Ricker map,exp
[
r

(
1− Ht

K

)]
.

There are three fixed points for ENB:(H,P) = (0, 0), (K, 0) and a mixed population(H∗, P ∗) which
must be calculated using a nonlinear root finder on the equations

H∗ = f(H∗, P ∗) and P ∗ = g(H∗, P ∗).

This mixed population is stable for an intermediate range of fecundity (r) and parasite effectiveness (a).
When a is sufficiently small the mixed population is unstable and the parasites go extinct (Ht → K).
Whena is sufficiently large the mixed population is also unstable, but in this case there can be stable limit

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 27

cycles, oscillations leading to extinction, or period-doubling bifurcations leading to chaos.To see discrete
population dynamics inMATLAB you will need to implement afor loop. For example, to see behavior in
the ENB you can implement the following M-file:

%
% ENB -- a small script for implementing the
% Enhanced Nicholson-Bailey model
%

n=1; a=4; r=1.75; k=1; % set parameters for ENB
ngens=50; % set number of generations
h=zeros(1,ngens); p=h; % initialize population vectors

p(1)=.1; h(1)=.9; % set initial conditions

for t=1:ngens-1 % iterate for next ngens-1 generations

h(t+1)=h(t) * exp(r * (1 - h(t)/k) - a * p(t));
p(t+1)=n * h(t) * (1 - exp(- a * p(t)));

end % of iteration over generations

plot(h,’b’),hold on, plot(p,’r’),hold off
legend(’host’,’parasite’)

Notice thefor andend statements above, which define a loop in theMATLAB script. Try running this
program for increasingly larger values and see how the dynamics change.

EXERCISE14: The (un-enhanced) Nicholson-Bailey model for host-parasite interactions is

Ht+1 = λHte
−aPt ,

Pt+1 = cHt

(
1− e−aPt

)
.

Earlier (lab 1) we examined the stability of the single non-zero fixed point for this model and showed that
it is always unstable. Write aMATLAB M-file which will allow you to set initial conditions exterior to
the program and then iterate for some number of generations. (Hint: you may wish to modify the RHS
of these equations to remove the possibility of negative values!) Additionally, plot the populationsagainst
one another(phase space) as well as against time (state space). The parametersa = 0.068, c = 1, λ = 2
correspond to the interaction between a greenhouse whitefly and its chalcid parasitoid. Now you have
visualized the well-known instability of what seems like a pretty reasonable model. Nicholson (1957)
proposed that the instability and subsequent death of both species would be moderated in nature by continual
re-invasion of patches.

3.3 Matlab Implementation of a Simple IDE

Probably the simplest possible integro-difference equation is one which incorporates a single step of disper-
sal followed by a single step of linear, Malthusian growth at a per-capita rate ofr:

Pn+ 1
2

= K ∗ Pn

Pn+1 = rPn+ 1
2
.

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 28

The order of these two steps (reproduction/dispersal or dispersal/reproduction) is not important, mathemat-
ically, although it can have significant biological repercussions (see Anderson (1991) for a discussion in the
context of plants). One may think of this as a model for an insect whose adult females disperse to new lo-
cations (with resulting densityPn+ 1

2
) and then lay eggs with a net fecundity ofr (including number of eggs

laid per female, fraction of eggs which hatch, fraction of larvae which survive to adulthood). The following
MATLAB script executes this scenario for simple drift and diffuse dispersal over several time steps.

%
% MALTHUS
%
% matlab code to evaluate dispersal due to convolution
% of a spatial dispersal probability with a population density
% function.
%
% p(x) - population density in x
% K(x) - probability of individual dispersal to location
% x starting at location 0.
% xl - maximum x coordinate (also - minimum)
% dx - spatial step delta x = 2 * xl/np
% np - number of points in discretization for x
% (should be a power of 2 for efficiency of FFT)
% c - center of spatial dispersal
% D - diffusion constant (per step)
% r - per-capita growth constant
%

np=128; xl=10; dx=2 * xl/np; c=.4; D=.25;
r=1.15;
nsteps=10;

%
% discretize space, define an initial population distribution
%

x=-xl+[0:np-1] * dx;
p=(abs(x+3)<=.5);
p0=p; % keep track of initial population for comparison

%
% define a dispersal kernel
%

K=exp(-(x-c).ˆ2/(4 * D))/sqrt(4 * pi * D);
%
% normalize K to make it have integral one
%

K=K/(dx * sum(K));
%
% calculate the fft of K, multiplying by dx to account
% for the additional factor of np and converting from a
% interval length of 1 to 2 * xl. The fftshift accounts for
% using an interval of (-xl, xl) as opposed to (0,2 * xl).
%

fK=fft(fftshift(K)) * dx;
%

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 29

% begin iterating the model
%

for j=1:nsteps,
%
% calculate the fft of p; perform the convolution
%

fp=fft(p);
fg=fK. * fp;

%
% fg now contains the fourier transform of the convolution;
% invert it, multiply by post-dispersal reproduction,
% and take a look.
%

g=r. * abs(ifft(fg));
plot(x, p0,’r’, x, g,’b’), axis([-xl xl 0 1.6])
pause(.5) % pause for .5 sec to see the plot

%
% update p and move to the next time step
%

p=g;

end % of the iterations

There are some features to note about this script. Thepause(.5) command causes the program to stop
for half a second and plot. Try commenting out this line and running the program again – you will see
only the end result as opposed to the intervening steps. Now try removing the parentheses, that is, replace
pause(.5) with pause . This will cause the program to wait for user input before proceeding – for
example, just hit the space bar in the command window and the program will advance one step. Finally, to
see all the steps together, replace theplot line with

hold on, plot(x, p0,’r’, x, g,’b’), axis([-xl xl 0 1.6]), hold off

This should allow you to see all the iterations on the same plot, with one additional per each ‘click’ of the
space bar.

EXERCISE15: Imagine now that the net fecundity,r, depends on space – that is, eggs hatch and survive
better in some regions or others. Modify the program above so thatr is 1.3 for |x| < 1.5 andr = .8
elsewhere. (Hint: theMATLAB commandones(1,np) generates a row-vector of ones of lengthnp and
the logical statement(abs(x) <= 1.5) generates a vector which has elements 0 where|x| > 1.5 and
1 where|x| ≤ 1.5). Will the population persist in this case? Now try the same scenario with with mean
dispersal distance zero (c = 0).

3.4 An Integro-Difference Approach to Nicholson-Bailey

3.4.1 Description of IDE for Enhanced Nicholson Bailey

The idea for implementing an IDE approach to known discrete dynamics is to imagine that the behavior of
the organisms can be represented in two stages:

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 30

• Reproduction and lifecycle dynamics. This is the portion of the populations’ behavior that is already
captured in the ENB, equations (1,2). For this particular model, we think of parasitized hosts as
immobilized, and future hosts as eggs (also immobilized). The major change is that nowHt andPt

are population densities depending on space,Ht(x, y) andPt(x, y).

• Dispersal. Cuddly fuzzy baby hosts and parasites disperse after birth, each according to species-
specific dispersal probabilities,KH(x, y) andKP (x, y) respectively. The basic form of the dispersals
for each species will be a form of dispersal kernel derived from the heat equation (for random diffusion
in a plane):

K(x, y, T) =
1

4πµT
exp

[
−x2 + y2

4µT

]
.

HereT is the dispersal time of each species andµ is a species parameter describing the ‘diffusivity,’
or rate of dispersal, of each population.

The mathematical blueprint for the IDE approach to ENB is then

1. Calculate the number of baby hosts and parasites based on the last population values:

Ht+1/2(x, y) = f(Ht, Pt) = Ht(x, y) exp
[
r

(
1− Ht(x, y)

K

)
− aPt(x, y)

]
,

Pt+1/2(x, y) = g(Ht, Pt) = nHt(x, y) (1− exp[−aPt(x, y)]) .

2. Disperse the toddling baby organisms using convolutions as described above:

Ht+1(x, y) = KH ∗Ht+1/2(x, y),
Pt+1(x, y) = KP ∗ Pt+1/2(x, y).

Notice that the dispersal kernels may be different for host and parasite! By iterating these rules for manyt
we can simulate many generations of reproduction, interaction, and dispersal.

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 31

3.4.2 Matlab Implementation

Below appears psuedo-code which implements the above model inMATLAB . For interesting results param-
eter values are chosen where oscillatory instabilities and chaos occur.

%
% NBSPACE
%
% matlab code to iterate an enhanced Nicholson-Bailey model
% for host and parasite, with each capable of diffusive movement.
%
% Intermediate variables (*) are created using a discrete
% enhanced N-B step:
%
% h* = h(t) exp[r (1 - h(t)/k) - a p(t)]
% p* = n h(t) (1 - exp[- a p(t)])
%
% This population is then allowed to disperse using a spatial
% convolution, * below, (like a long step of a heat equation):
%
% h(t+1) = p_h(x,y) * h*
% p(t+1) = p_p(x,y) * p*
%
% p_h and p_p can be any probability functions representing the
% dispersal of the two species; I have used Gaussians below.
%
% Parameters appearing (and their interpretation):
%
% r reproduction rate of host species
% k carrying capacity of host species
% a encounter rate or effectiveness of parasite on host
% n parasites produced by a successful infestation
%
% Parameters used for the code:
%
% np number of points in x, y directions (a power of 2)
% xl length of domain in x and y directions
% dx grid spacing
% dt a time-step length
% mu followed by h and p -- diffusion parameter for each
% species
% ngens number of steps to run the code (number of
% generations

%
% set parameters and spatial grids
%

np=64; mup=.02; muh=.02; dt=.5; xl=10; dx=2 * xl/np; ngens=20;
x=linspace(-xl,xl-dx,np);
y=x; [X,Y]=meshgrid(x,y);

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 32

%
% set up spatial parameters
%

n=ones(np);
a=4* ones(np);
r=1.75 * ones(np);
k=ones(np);

%
% Set up stuff for movie
%
% M=moviein(ngens); % If you want movies

%
% Set up initial conditions
%

p0=.5 * (1+cos(.5 * pi * X/xl+pi/4 * rand(np)). * sin(pi * Y/xl-pi/2 * rand(np)));
h0=.5 * rand(np). * (1+cos(4 * pi * sqrt(X.ˆ2+Y.ˆ2)/xl));

%
% Define movement kernels for host and parasite
%

hker=exp(-(X.ˆ2+Y.ˆ2)/(4 * muh* dt))/(4 * pi * dt * muh)* dxˆ2;
Fhker=fft2(hker); % FFT is taken because we will use it often,

% two factors of dx; one for each dimension

pker=exp(-(X.ˆ2+Y.ˆ2)/(4 * mup* dt))/(4 * pi * dt * mup)* dxˆ2;
Fpker=fft2(pker);

%
% Now we are in a position to iterate for
% a number of generations equal to ngens
%

for j=1:ngens

%
% Advance the life cycles using adjusted N-B model
%

hn=h0. * exp(r. * (1-h0./k)-a. * p0);
pn=n. * h0. * (1-exp(-a. * p0));

%
% Do the dispersal step
%

fhn=fft2(hn); % First take fft of each species

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 33

fpn=fft2(pn); % First take fft of each species

%
% Now do the convolutions.
% The fftshift serves to center the probability functions.
%

h0=real(fftshift(ifft2(Fhker. * fhn)));
p0=real(fftshift(ifft2(Fpker. * fpn)));

%
% Now plot the solution
%

pcolor(X,Y,h0-p0), shading interp, axis square, colorbar
pause(.1)

% M(:,j) = getframe; % If you want movies

end
%
% Here ends the iteration
%

%
% To play the movie, use this command:
% movie(M,2,8)

Now, if you want to run this M-file as it stands you should see basically a complicated spatial field at
the end. This field is coded so that the difference between relative abundances of host and parasite can be
seen; places with more abundant hosts will appear as red, more abundant parasites as blue. To see a movie
you must un-comment the

% If you want movies

lines in the script. These movies can be memory-intensive, so don’t get freaked out if your computer
suddenly starts whirring and smoking! Also, movies are created inMATLAB basically by saving screen-
grabs of the (normally computationally intensive) graphics. This allows the frames of the movie to be
‘stacked’ together and viewed rapidly, but it also means that you can not change the size of movie when it is
being viewed, and if you pop up any windows which overlap with theMATLAB graphics window while you
are producing a movie,MATLAB will grab whatever you popped up and keep it in the movie! The command

movie(M,2,8)

will play the movie,M, 2 times at a speed of 8 frames per second. The advantage of having a movie is that
you can play it again and again without re-doing the calculation. You can also save a movie to a transportable
AVI file.

EXERCISE16: Copy the aboveMATLAB M-file and modify it to implement an IDE for the normal, vanilla
Nicholson Bailey model. Run the model with initial conditions which are:

1. Spatially homogenous (constant).

2. Spatially random (rememberrand).

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 34

3. On a spectrum of structures (try taking a constant + sinusoidally varying perturbations and then change
the relative magnitudes – as ink=1+.9 * cos(4 * pi * X/xl). * cos(4 * pi * Y/xl)).

Can you verify Nicholson’s hypothesis that space allows persistence of both species?

EXERCISE17: Create aMATLAB M-file which will simulate the spatial spread of a single population
satisfying (when space is not included) a logistic model:

Pn+1 = Pn + rPn(1− Pn)

with random dispersal. For a particular (small) diffusion parameter, investigate the effect of increasing the
intrinsic growth rate (r) of the population. What do you observe? Is this reasonable? What happens whenr
enters the chaotic regime?

3.5 Spatially Structured Environments

One of the nice things about IDE models implemented inMATLAB is that they can accommodate spatial
structure easily. Returning to the ENB model for a moment, consider the ways in which the spatial envi-
ronment might influence parameters in the model. It is possible that motility of organisms can vary with
the environment – an example of this is provided above in the section on victim-taxis. Neglecting this,
the environment can have a plethora of life-history effects, perhaps the largest of which is alteration in the
‘carrying capacity,’K, of the environment for the host. Returning to theMATLAB code for the ENB given
above, notice that when parameters are defined they are defined asmatricesof the same size as all spatial
variables. When the parameters are used in the life-history step of the IDE, theMATLAB implementation
accounts for element-by-element matrix multiplication. Consequently, if we wanted to simulate the effect
of a crop on the host, we could insert

k=.1 * ones(np)+(abs(X)<=.25)+(abs(X)>=1.75 & abs(X)<=2.25)...
+(abs(X)>=3.75 & abs(X)<=4.25)...
+(abs(X)>=5.75 & abs(X)<=6.25)...
+(abs(X)>=7.75 & abs(X)<=8.25)...
+(abs(X)>=9.75 & abs(X)<=10.25);

in place of the existing line

k=ones(np)

(Notice theMATLAB form of ‘continuation’ for a long line: the ellipsis ‘...’) This will have the effect of
putting ‘stripes’ of high carrying-capacity crops in the environment.

EXERCISE18: Implement the crop-structured spatial heterogeneity indicated above. Think of a way to
introduce parameters so that the width of the crop stripes and their relative ‘value’ to the host are easy to
adjust. Try some simulations – are there ‘crops’ and spatial structures which are more or less vulnerable to
infestation by the host even in the presence of the parasite?

EXERCISE19: Suppose that the cropping structure also influences the ‘efficiency,’a, of the parasite. How
should this be included, and what are its effects on the dynamics?

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 35

Although they may be tedious, artificial spatial structures are much easier to introduce than ‘natural’
ones, just because a semi-structured ‘random’ environment is very hard to put together off the top of your
head. Of course, in principle one could take field measurements of a spatial arena and then scan these into
density plots, but probably that is beyond the scope of our current lab experience. One alternative was
suggested to me by Professor Jon Allen. The followingMATLAB script, named ‘rockies.m’ generates a
randomized but spatially correlated structure by choosing random phases and angles in Fourier spectrum,
but using a user-specified power law for decreasing energy in the power spectrum. (If this doesn’t make
sense to you, don’t sweat it; the program will work anyway). TheMATLAB script requires a ‘fractal dimen-
sion’, H, which increases the spatial correlation (think regularity) as the ‘dimension’ increases. The code
appears below, but is available for download in the class directory. The script will produce a surface plot
of the fieldB, which is normalized so that its peak value is one, and is also then available to be used for
simulating resource heterogeneity. The ‘power-law’ decrease in the spectral energy of waves,p, is defined
asp=(H+1)/2 because when the exponent is 1/2 the distribution is theoretically indistinguishable from
‘white’ noise. The most interesting structures appear forH between .5 and 1.5. An example of the kind of
output you should expect is the cover art for this reader.

%
% ROCKIES
%
% This matlab script generates a structured but random spatial
% environment of size NxN. The user inputs the following:
% N - number of grid points in both x,y directions
% H - fractal dimension (bigger -> smoother the landscape)
%

N=64; H=1.2;
p=(H+1)/2;

[I,J]=meshgrid([-N/2+1:N/2], [-N/2+1:N/2]); % wave modes
randn(’seed’,0);
phases=2 * pi * rand(N); % random phases
amp=randn(N). * (I.ˆ2+J.ˆ2).ˆ(-p); % normal amplitudes about power law
amp(N/2,N/2)=0; % avoid division by zero
fA=amp. * exp(i * phases); % field in Fourier space

A=ifft2(fA); % invert transform
B=abs(A); % make field real, >0
B=B/max(max(B)); % normalize

surf(B), colormap(jet), shading interp
view(-37.5,60)

EXERCISE20: Run therockies program for a few choices of the ‘fractal dimension.’ Describe the
relationship between increasing this parameter and the output field.

EXERCISE21: Use theB field output by therockies program to generate random landscapes of carrying
capacity for the ENB model. One way to do this would be simply to execute the rockies script and then state

k=2 * B;

3 IMPLEMENTING AN INTEGRO-DIFFERENCE MODEL 36

in the ENB program. Modify the graphic output to include contours of the resource with the density plots of
the relative abundance of victims/parasites. What dynamics behaviors seem to correlate with what landscape
features? What consequences do you think this might have for Nicholson’s hypothesis for the persistence of
parasitized populations in space?

Wow, Good Job! You now know secret and official things about the computational implementation of IDE
usingMATLAB !

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 37

4 Boundaries, Chemotaxis and Student Case Studies

4.1 Goals

In this lab we will finish off some of the complicated details which may be necessary for practical application
of integro-difference equations (IDE). The first of these is the implementation of boundaries, in particular
‘lethal’ (or ‘absorbing’) boundaries and ‘solid’ (or ‘reflecting’) boundaries. The second is accounting for
semi-random movement in response to external stimuli, in particular chemo-taxis. Thus, we will

• Learn how to use even and odd reflections to implement lethal (P = 0) and solid (∂P
∂x = 0) boundary

conditions for IDE.

• Implement Powell et. al.’s 1998 approach for modelling chemotactic movement of a population.

• Spend time working out some of the computational details of the student case studies.

An overall goal for this class is to get students to ‘work without a net,’ that is, to create IDE simulations
of ecological circumstances which may shed light on research questions. To encourage this, we will have
lab time for teams to begin implementing an IDE approach, with our fearless instructor around to help with
difficulties. Participants should work in teams of 2 or more to discuss the models which will be implemented,
parameter regimes to be studied, and experimental protocols to be used. Then each student should build their
own simulator and implement their portion of the experimental protocol, and get back together with the rest
of the group to discuss results. I have suggested some group projects, but feel free to work on something
closer to your own research or interests. Each group should have something to present to the rest of the class
on the final day. You may have to work mainly with one spatial dimension in order to have enough time to
experiment freely. As we have seen in the rest of the class, if you can do it in one dimension withMATLAB

then you can do it in two dimensions with only slight modification.

4.2 Reflecting and Absorbing Boundary Conditions

4.2.1 The Wall of Doom

The general format of an IDE for a populationP is

Pt+1/2 = f(Pt),
Pt+1 = K ∗ Pt+1/2.

Here f is the functional response connecting the dispersal stage organism (with densityPt+1/2) to the
previous generation andK is the spatial dispersal probability for an initially localized individual. Spatial
boundaries only have an impact in the second step during which dispersal occurs.

A lethal boundary condition is written mathematically asP = 0 at somex = L. This would seem to
be quite a problem for our FFT-based approach, which assumes at a basic level that functions going into
the FFT are periodic. However, we can get around this byreflectingthe data. If the dispersal kernel,K, is
symmetric (so that the probability of moving to the left is exactly the same as that of moving to the right, or
K(−x) = K(x)), the effect ofP (x = L) = 0 can be simulated by creating ananti-population of dispersers
on the opposite side ofx = L, which when it disperses back toward the positive (real) population will
exactly cancel out atx = L. Since the functions we are looking at must be periodic on the entire (reflected)
interval, we will also have a lethal boundary atx = 0 because of this reflection. Unlike what we have done
before, the real population is only betweenx = 0 andx = L; the region fromx = −L to x = 0 only exists
as a mechanism to implement the correct boundary conditions and has no physical interpetation. Below is a
script which executes this implementation of boundary conditions.

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 38

%
% BCs
%
% matlab code to illustrate the effect of boundary conditions
% and their implementation
%
% boundary conditions will be implemented at x=0, x=xl
% by reflecting the domain
%
% p(x) - population density in x
% K(x) - probability of individual dispersal to location
% x starting at location 0.
% xl - maximum x coordinate (also - minimum)
% dx - spatial step delta x = 2 * xl/np
% np - number of points in discretization for x
% (should be a power of 2 for efficiency of FFT)
% D - diffusion constant (per step)
%

np=128; xl=5; dx=2 * xl/np; c=0; D=.25;

%
% discretize space, define an initial population distribution
%

x=-xl + [0: np-1] * dx;
p=(abs(x-1.5) <= 1.); p0=p; % keep initial population
plot(x, p0,’r’)

%
% define and normalize a dispersal kernel
%

K=exp(-x.ˆ2 /(4 * D))/sqrt(4 * pi * D);
K=K/(dx * sum(K));

%
% calculate the fft of K, multiplying by dx to account
% for the additional factor of np and converting from a
% interval length of 1 to 2 * xl.
%

fK=fft(K) * dx;

%
% skew-reflect the data to implement wall of doom
% pa contains the actual population before dispersal
% pr contains the reflected population before dispersal
%

pa=p;

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 39

pr=-p(np:-1:1); % start at np, go backwards for reflection

%
% calculate the fft of the pa, pr; perform the convolutions
%

fpa=fft(pa); fpr=fft(pr);
fga=fK. * fpa; fgr=fK. * fpr;

%
% fgr and fga now contain FFT of the convolution of reflected
% and actual fields, respectively; now invert
%

gr=real(fftshift(ifft(fgr)));
ga=real(fftshift(ifft(fga)));
g=ga+gr;

%
% update p, undoing the reflection (that is, take only the data
% from x=0 to xl, with zeros elsewhere
%

p=g. * (x>=0);

hold on, plot(x, ga,’m’, x, gr,’r’, x, g, ’g’, x, p, ’b’), hold off
axis([-xl xl -1 1])

Take particular notice of the statement

pr=-p(np:-1:1);

which implements the reflection of the data. InMATLAB the statementnp:-1:1 will generate numbers
starting atnp and stepping backwards (by steps of -1) to 1. Placing these indices intop, as above, reflects
the field (negatively) aroundx = 0. The program then disperses both the original and reflected fields, re-
sums to get the field which implements the boundary conditions (g above), and then recovers the actual field
(by setting the field back to zero for negativex). The results are plotted with the reflected field in red, the
unreflected field in magenta, the sum of these two in green and the final result (the population after dispersal,
with no negative individuals) in blue. Notice that neither the red (negative-reflected) nor magenta fields are
zero at0 or xl , but since they are skew-symmetric when they get added up they create the green field which
is zero.

EXERCISE22: Use for ... end statements andpause to continue the dispersal through several
time steps. When you are confident that you have done this properly, extend the program to account for re-
production after dispersal (that is, replacep=g. * (x>=0) with p=r * g. * (x>=0) , wherer is a parameter
you will set to be larger than 1). What do you observe after iterating the combination of dispersal, lethal
boundaries, and reproduction for several generations? What is the long term behavior whenr is close to
one? Can you adjustr so that the population persists? What is your interpretation?

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 40

4.2.2 Reflecting Boundaries

A reflecting boundary (that is, a boundary condition∂P
∂x = 0) is implemented the same way as a lethal

boundary, except that the reflection is donepositively instead of negatively. If the population projected
on the far side of the wall is precisely the population on the physically relevant side, when the actual and
reflected populations are summed the gradient must be zero at the wall itself. You can see this in the exercise
below.

EXERCISE23: To implement solid boundaries, in the script you have written above replace the line

pr=-p(np:-1:1);

with the line

pr=p(np:-1:1);

Run the script and see what happens, starting withr=1 . If you iterate dispersal several times the final result
should approach a constant, non-zero average value. Why is this? Remember that you have a solid wall
on each end of the domain, which does not allow individuals or their offspring to escape. The effect of a
long period of random motion, since no individuals are lost, is to eventually create a uniform distribution.
Is there any problem with persistence in this case?

4.2.3 Mixed Boundaries

It might happen that one boundary is lethal (P = 0) while the other is solid (Px = 0), in which case one
needs to do adoublereflection. Let’s suppose we want to investigate a situation with a solid (reflecting)
boundary atx = 0 and a lethal (absorbing) boundary atx = L. The absorbing boundary will require a
skew reflection aboutx = L (and a computational space twice as large as the physical space of interest),
and this new field will be postively reflected aboutx = 0 to implement the reflecting boundary (resulting in
a computational space four times as large as the original physical space). AMATLAB script implementing
mixed boundary conditions (with drift and drop dispersal) appears below.

np=64;
xl=5;
dx=xl/np;
x=dx * [0:np-1]; % the physical space of interest
x2=dx * [-2 * np:2 * np-1]; % the virtual space on which reflections occur

D=.4; % per-step dispersal distance

K=.5/D * exp(-abs(x2)/D); % double-exponential dispersal kernel
fK=dx * fft(K);

p0=(abs(x-2.5) <=1); % initial population

for istp=1:10, % begin several dispersal steps

pr=[p0, -p0(np:-1:1)]; % skew reflection to right for
% lethal boundary at x=xl

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 41

pl=[pr(2 * np:-1:1), pr]; % positive reflection to left for
% reflecting boundary at x=0

fpl=fft(pl);
p2=real(fftshift(ifft(fK. * fpl)));

pn=p2(2 * np+1:3 * np); % use only that data corresponding to the
% physical region of interest

hold on, plot(x, p0,’r’, x, pn,’g’), axis([0 xl 0 1]), hold off
pause(.1)
p0=pn; % update the population field

end % of dispersal

Notice that implementing this kind of mixed boundaries requires vectors twice as long as implementing
boundaries of the same type. This is not such a big problem in one dimensional simulations, but it can
become computationally prohibitive in multiple dimensions.

4.2.4 Boundary Conditions in Two Dimensions

In principle, lethal and reflecting boundaries are implemented the same way in two dimensions as in one.
Now, however, there are two sets of reflections to implement (in bothx andy directions). Let’s implement
reflecting boundaries for a ‘ring-random’ or ‘ripple’ dispersal kernel,

K

(
r =

√
x2 + y2

)
= Ce−

(r−vt)2

4Dt ,

which models propagules leaving the place of their origin at speedv and random choice of direction, travel-
ling and dispersing (with diffusivityD) for a timet before settling. This kernel (also called the ‘ripple’) was
used by Brewster et. al. (1997) to investigate the dispersal of whiteflies in the Imperial Valley of California.
The constantC must be evaluated numerically for normalization. TheMATLAB script below implements
‘ripple’ dispersal with reflecting boundaries aty = 0 andy = L and lethal boundaries atx = 0 andx = L.
First, we set up both the grid of interest,[X,Y] , and the grid required for the reflections,[X2,Y2] .

% set parameters for the ripple or ring-random diffusion kernel
%

t=2; D=.1; v=2;
%
% Define spatial parameters and 1-D coordinate axes
%

xl=10; yl=10; np=64; dx=2 * xl/np; dy=2 * yl/np;
x=linspace(0,xl-dx,np); x2=linspace(-xl,xl-dx,2 * np);
y=linspace(0,yl-dy,np); y2=linspace(-yl,yl-dy,2 * np);

%
% Define meshgrid for plotting physical space [X,Y]
% and space in which reflections occur, [X2,Y2]
%

[X,Y]=meshgrid(x,y);
[X2,Y2]=meshgrid(x2,y2);

%

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 42

% Define ring-random dispersal kernel and normalize
%

K2D=exp(-(sqrt(X2.ˆ2+Y2.ˆ2)-v * t).ˆ2./(4 * D* t));
K2D=K2D/(dx * dy * trapz(trapz(K2D))); % normalize

%
% Take FFT for purposes of convolution
%

fK=fft2(K2D) * dx * dy;

This script sets up the grids and the ripple dispersal kernel. Now we can define an initial population (in a
circle centered in the domain)

p0=3 * (((X-xl/2).ˆ2 + (Y-yl/2).ˆ2) <= 1.);

and perform reflections preparatory to doing the dispersal. First we must do an even reflection in they
direction for the reflecting boundaries:

py=[p0; p0(np:-1:1,:)];

The semi-colon above places one matrix above the other, and the(np:-1:1,:) takes rows (first index)
in reverse order, for all columns (the colon in the second argument). This matrix must now be negatively
reflected in thex direction to implement the lethal boundary

px=[-py(:, np:-1:1) py];

Now we can just do the regular dispersal on the reflected grid:

fp2=fft2(px);
p2=real(fftshift(ifft2(fp2. * fK)));
pt=p2(np+1:2 * np, np+1:2 * np);
pcolor(X,Y,pt), shading interp, colormap hot, axis square

You may want to trysurf(X,Y,pt), shading interp, colormap jet to get a better idea how
the boundaries are influencing dispersal The only particularly difficult thing here is knowing which part of
the reflected and dispersed data to take to get the population of interest. Given the way that we did the
reflection it is the ‘upper-right-corner’ of the data, orx andy indices fromnp+1 to 2* np .

EXERCISE24: To make sure that you understand the reflection process, edit the script above so that it
implements a lethal boundary aty = 0, L and a reflecting boundary atx = 0 andx = L. How many
reflections would you need to implement a reflecting boundary atonlyx = 0, with lethal boundaries on the
other three?

EXERCISE25: Write a script which will do several iterations of ring-random dispersal with short time
steps and plot the results to see what happens as the waves of dispersal approach the boundaries.

4.3 A Model for Chemo-Taxis

The last thing that might be of interest is implementing chemotaxis. Many (if not most) insect species find
mates, hosts, or prey (or all) using chemical clues. Bark beetles find hosts and initialize a ‘mass-attack’

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 43

using a pheromone feedback system (Powell et. al. 1998), natural populations ofDrosophilafind rotting
fruit to lay eggs on by following the odor of ethanol (Etienne et. al 2002, Lof et. al 2008), and a variety of
insects, including ladybird beetles (Coccinella) respond to the odor of sugar-water. Powell and co-workers
(1998) developed an IDE approach to emulate the chemotactic dispersal process, which is discussed here in
one dimension in the context ofDrosophilaresponse to ethanol.

Consider a resource (apples) distributed with densityR, fermenting and releasing ethanol (E) at a rate
δ. The steady-state ethanol distribution then satisfies

E = KE ? (δR) , KE =
1

2L
exp

[
−|x|

L

]
,

whereL is the mean dispersal distance of the ethanol. A model for the ‘sensory index’, or degree of
saturation of the sensory apparatus of the flies, is

F (E) =
E

E0 + E

HereE0 is a saturation parameter – basically the level at which the sensory apparatus of theDrosohpilais
halfway to being completely saturated with ethanol. A model for the population response is

∂

∂t
P = − ∂

∂x

toward increasingF︷ ︸︸ ︷
νP

∂F (E)
∂x

−

random motion︷ ︸︸ ︷
µ

∂P

∂x

 .

The parametersν andµ parameterize the relative strengths of the tactic response and random dispersal,
respectively. Let

KR =
1√

4πµt
exp

[
− x2

4µt

]

be the random dispersal kernel for flies (whenν = 0 or E = 0), implemented over some time interval,t.
An approximate solution (details of how approximate are discussed in Powell et. al., 1998) is given by

Π(x, t) = KR ?

{
exp

[
−ν

µ
F (E)

]
P (x, t = 0)

}
,

P (x, t) = C exp
[
ν

µ
F (E)

]
Π(x, t).

The constantC must be chosen to normalizeP (x, t) because this method is not guaranteed to preserve the
number of individuals in the dispersing population. Following is aMATLAB code which implements the
chemotactic procedure over several iterations.

%
% CHEMOTAX
%
% matlab code to emulate a chemotactic process
%
% p(x) - population density in x (drosophila)
% e(x) - ethanol concentration
% r(x) - resource distribution
% KR(x) - probability of individual dispersal
% KE(x) - dispersal kernel of ethanol
% xl - maximum x coordinate (also - minimum)
% dx - spatial step delta x = 2 * xl/np

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 44

% np - number of points in discretization for x
% mu - diffusion constant (per step)
% nu - chemotactic constant
% a - dispersal distance of ethanol
% d - release rate of ethanol from resource
% E0 - saturation constant for sensory index
%

np=128; xl=8; dx=2 * xl/np;
t=1; mu=1; nu=10;
a=.5; d=2; E0=.5;
nsteps=15;

%
% discretize space, define an initial population distribution
%

x=-xl+[0:np-1] * dx;
p=(abs(x+3)<=.5); p0=p; % keep track of initial p for comparison
r=(abs(x-2)<=.5); % resource density

%
% define dispersal kernels and normalize
%

KR=exp(-(x).ˆ2/(4 * D* t))/sqrt(4 * pi * D* t);
KE=exp(-abs(x)/a);
KR=KR/(dx * sum(KR));
KE=KE/(dx * sum(KE));

%
% calculate the fft of KR, KE; dx normalizes convolution
%

fKR=fft(KR) * dx;
fKE=fft(KE) * dx;

% calculate ethanol field

E=real(fftshift(ifft(fft(d * r). * fKE)));
plot(x, p,’b’, x, p,’m--’, x, E/max(E),’y’, x, r,’r’), ...

axis([-xl xl 0 1.1 * max(p)])

% calculate sensory index

FE=E./(E0+E);

% begin iterating the model

for j=1:nsteps,
%
% calculate the fft of pi = p. * exp(-nu/mu f(E));
% perform the convolution on the pi
%

peye=p. * exp(-nu/mu * FE);
fpi=fft(peye);
fg=fKR. * fpi;

%

4 BOUNDARIES, CHEMOTAXIS AND STUDENT CASE STUDIES 45

% fg now contains the fourier transform of the convolution;
% invert it, multiply by the inverse exp(nu/mu * FE)
%

g=exp(nu/mu * FE). * real(fftshift(ifft(fg)));
%
% Now we must be careful to normalize!
%

C=trapz(p)/trapz(g); g=C * g;

hold on, plot(x,g,’b’), hold off
pause(.1)

% update p and move to the next time step
p=g;

end % of the iterations

One can think of this implementation as a pre-multiplication of the dispersing population,P , with a disper-
sal ‘bias’: individuals further away from the source of the ethanol (therefore sensing lowf(E)) are more
strongly biased to random dispersal. The biased population (Π) is dispersed at random, and then de-biased
(by multiplication ofexp[ν/µf]). Provided the time steps are small enough, this approximates the chemo-
tactic dispersal process. As it turns out, the model works just fine for large time steps, even if it does not
approximate the PDE. As with the prey-taxis discussed in the previous lab (Turchin-taxis) the main diffi-
culty is that the process is not linear int– five steps witht = 2 is not necessarily equivalent to two steps
with t = 5.

EXERCISE26: Form hypotheses about the impact of the parameters on chemotactic dispersal, and test
your hypotheses against model iterations. For example, for a given time step, if the ethanol disperses further
(largera) the flies should find the resources more rapidly. Or, if chemotaxis is stronger than random motion
(ν > µ) then the resulting pattern of aggregation should be much more tightly centered on the resource.
Change parameters to reflect your hypotheses and test if they are correct.

EXERCISE27: Adapt the chemotactic procedure to work in two dimensions (really the only thing that needs
to change is the definition of space and working out the 2D FFT). Try using therockies.m program to
give a random background environment for ethanol production.

Well, look at you! You have gotten to the end of the formal lab material on integro-difference equations!
Good Work!

REFERENCES 46

References

[1] Allen, J.C., C.C. Brewster and D.H. Slone, 2001. Spatially explicit ecological models: a spatial con-
volution approach.Chaos, Solitons and Fractals12: 333–347.

[2] Allen, J.C., C.C. Brewster, J.F. Paris, D.G. Riley and C.G. Summers, 1996. Spatiotemporal modeling
of whitefly dynamics in a regional cropping system using satellite data. Pages 111–124 in: Gerling,
D. and R.T. Mayer, eds.Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. UK:
Intercept, Andover.

[3] Allen, L.J.S, E.J. Allen and D.N. Atkinson, 1999. Integro difference equations applied to plant disper-
sal, competition and control,Fields Institute Communications21: 15–30.

[4] Andersen, M., 1991. Properties of some density-dependent inegrodifference equation population mod-
els.Mathematical Biosciences104: 135–157.

[5] Andow, D.A., P.M. Karieva, S.A. Levin and A. Okubo, 1990. Spread of invading organisms.Landscape
Ecology4: 177-188.

[6] Brewster, C.C. and J.C. Allen, 1997. Spatiotemporal model for studying insect dynamics in large-scale
cropping systems.Environmental Entomology26: 473–482.

[7] Cain, M.L., H. Damman and A. Muir, 1998. Seed dispersal and the Holocene migration of woodland
herbs.Ecological Monographs68: 325–347.

[8] Clark, J.S., M. Silman, R. Kern, E. Macklin and J. HilleRisLambers, 1999. Seed dispersal near and
far: patterns across temperate and tropical and tropical forests.Ecology80: 1475–1494.

[9] Clark, J.S., C. Fastie, G. Hurtt, S.T. Jackson, C. Johnson, G.A. King, M. Lewis, J. Lynch, S. Pacala,
C. Prentice, E.W. Schupp, T. Webb III and P. Wyckoff, 1998. Reid’s paradox of rapid plant migration.
Bioscience48: 13–24.

[10] Cobbold, C.A., Lewis, M.A., Roland, J., Lutscher, F. 2005. How parasitism affects critical patch size
in a host-parasitoid system: Application to Forest Tent Caterpillar.Theoretical Population Biology67:
109-125.

[11] Edelstein-Keshet, L. 1988.Mathematical Models in Biology. McGraw-Hill, New York, 586 pages.

[12] Etienne, R., B. Wertheim, L. Hemerik, P. Schneider and J. Powell, 2000. “Dispersal may enable per-
sistence of fruit flies suffering from the Allee effect and scramble competition,”Proceedings of the
Dutch Entomological Society(11): 121–128.

[13] Etienne, R., Wertheim, B., Hemerik, L., Schneider, P., Powell, J.A., 2002. The interaction between
dispersal, the Allee effect and scramble competition affects population dynamics. Ecol. Model. 148(2),
153168.

[14] Hart, D.R. and R.H. Gardner, 1997. A spatial model for the spread of invading organisms subject to
competition.J. Math. Biology35: 935–948.

[15] Holmes, E.E., M.A. Lewis, J.E. Banks and R.R. Veit, “Partial differential equations in ecology: spatial
interactions and population dynamics,”Ecology75: 17-29.

[16] Heavilin, J., J.A. Powell and J.A. Logan. 2007. “Development and parametrization of a model for bark
beetle disturbance in lodgepole forest.” pages 527-553 IN: K. Miyanishi and E. Johnson (eds),Plant
Disturbance Ecology, Academic Press, NY.

[17] Heavilin, J. and J.A. Powell, 2008. A novel method of fitting spatio-temporal models to data, with
applications to the dynamics of Mountain Pine Beetles. Natural Resource Modeling 21: 489-524.

[18] Kot, M., 1992. “Discrete-time travelling waves: Ecological examples,”Journal of Mathematical Biol-
ogy30: 413–436.

REFERENCES 47

[19] Kot, M.A. Lewis and P. v.d. Driessche, 1996. Dispersal data and the spread of invading organisms.
Ecology77: 2027–2042.

[20] Lewis, M.A. and J.D. Murray, 1993. Modelling territoriality and wolf-deer interactions.Nature366:
738–740.

[21] Lof, M.E., Etienne, R., de Gee, M., Hemerik, L., Powell, J., 2008. The effect of chemical information
on the spatial distribution of fruit flies: I Model results.Bull. Math. Biol 70:1827-1849.

[22] Luckinbill, L.S., 1973. Coexistence in laboratory populations ofParamecium aureliaand its predator
Didinium nasutum. Ecology54: 1320–1327.

[23] Murray, J.D., 1989.Mathematical Biology. Springer-Verlag, Berlin, 767 pages.

[24] Neubert, M.G., M. Kot and M.A. Lewis, 1995. Dispersal and pattern formation in a discrete-time
predator-prey model.Theoretical Population Biology48: 7–43.

[25] Nicholson, A.J., 1957. The self-adustment of of populations to change.Cold Spring Harbor Symp.
Quantum Biol.22: 153–172.

[26] Pielaat98 Pielaat, A. and F. van den Bosch, 1998. A model for dispersal of plant pathogens by rain-
splash.IMA J. Mathematics Applied in Medicine and Biology15): 117–134.

[27] J.A. Powell, I. Slapnǐcar and W. van der Werf. 2005. “Epidemic Spread of a Lesion-Forming Plant
Pathogen – Analysis of a Mechanistic Model with Infinite Age Structure,”Journal of Linear Algebra
and Applications398: 117-140.

[28] Powell, J.A. and N.E. Zimmermann, 2004. “Multi-Scale Analysis of Active Seed Dispersal Contributes
to Resolving Reid’s Paradox,”Ecology85:490-506.

[29] Powell, J., T. McMillen and P. White, 1998. Connecting a Chemotactic Model for Mass Attack to a
Rapid Integro-Difference Emulation Strategy,SIAM J. Appl. Mathvol. 59, no. 2, pp 547-572.

[30] P. Skelsey, W.A.H. Rossing, G.J.T. Kessel, J. Powell, and W. van der Werf. 2005. “Influence of Host
Diversity on Development of Epidemics: An Evaluation and Elaboration of Mixture Theory,”Phy-
topathology95:328-338.

[31] Tilman, D., 1994. Competition and biodiversity in spatially structured habitats.Ecology75: 2-16.

[32] Turchin, P., J.D. Reeve, J.T. Cronin and R.T. Wilkens, 1997. Spatial pattern formation in ecological
systems: bridging tehoretical and empirical approaches. Pp. 195-210in: Bacompte J., Solé R.V. (eds),
Modelling Spatiotemporal Dynamics in Ecology. Landes Bioscience, Austin, TX.

[33] Turchin, P., 1989. Population consequences of aggregative movement.J. Animal Ecology58: 75–100.

[34] van den Bosch, F., J.A.J. Metz and J.C. Zadoks, 1997. “Pandemics of focal plant disease, a model,”
Technical Note 97-06, Wageningen Agricultural University, 22 pages.

[35] van der Werf, W., E.W. Evans and J. Powell, 2001. Measuring and modelling dispersal ofCoccinella
septempunctatain alfalfa fields.European Journal of Entomology97: 487–493.

