Problem Definition

Problem 45. **Demand:** The demand function for a product is modeled by

\[p = 5000 \left(1 - \frac{4}{4 + e^{-0.002x}} \right) \]

Find the price of the product if the quantity demanded is (a) \(x = 100 \) units and (b) \(x = 500 \) units. What is the limit of the price as \(x \) increases without bound.

Solution Step 1:

For the two demand values, we need to evaluate the expression above. For the first value (a) \(x = 100 \) we can write

\[p = 5000 \left(1 - \frac{4}{4 + e^{-0.002(100)}} \right) = 5000 \left(1 - \frac{4}{4 + e^{-0.2}} \right) \approx 849.53 \]

and for the second value

\[p = 5000 \left(1 - \frac{4}{4 + e^{-0.002(500)}} \right) = 5000 \left(1 - \frac{4}{4 + e^{-1.0}} \right) \approx 421.12 \]

The value seems to be decreasing.

Solution Step 2:

To answer the question about the value as the demand increases, we can take the limit as \(x \to \infty \). That is, see what the horizontal limit would be. This is computed using information from Section 3.6.

\[\lim_{x \to \infty} 5000 \left(1 - \frac{4}{4 + e^{-0.002x}} \right) = 5000 \lim_{x \to \infty} \left(1 - \frac{4}{4 + e^{-0.002x}} \right) \]

Since the function is continuous, as \(x \to \infty \)

\[\lim_{x \to \infty} e^{-0.002x} = 0 \]

This means that

\[5000 \lim_{x \to \infty} \left(1 - \frac{4}{4 + e^{-0.002x}} \right) = 5000 \lim_{x \to \infty} \left(1 - \frac{4}{4 + 0} \right) = 5000 \lim_{x \to \infty} (1 - 1) = 5000 \lim_{x \to \infty} 0 = 0 \]

So, the price will go to zero as the demand gets arbitrarily large.