Problem Definition

Problem 43. **Velocity and Acceleration** The velocity (in feet per second) of an automobile starting from rest is modeled by

\[\frac{ds}{dt} = \frac{90t}{t + 10} \]

Create a table showing the velocity and acceleration at 10 second intervals during the first minute of travel? What can you conclude?

Solution Step 1:

The acceleration is found by computing the second derivative of the position variable, \(s \), or the first derivative of the velocity with respect to \(t \). The acceleration is given by

\[\frac{d^2s}{dt^2} = \frac{d}{dt} \frac{90t}{t + 10} = \frac{90(t + 10) - 90t(1)}{(t + 10)^2} = \frac{900}{(t + 10)^2} \]

We will use the given velocity and this function to fill in the table.

Solution Step 2:

Using \(\frac{ds}{dt} \) and \(\frac{d^2s}{dt^2} \) the following table can be filled in.

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s'(t))</td>
<td>0</td>
<td>45</td>
<td>60</td>
<td>67.5</td>
<td>72</td>
<td>75</td>
<td>77.1</td>
</tr>
<tr>
<td>(s''(t))</td>
<td>10</td>
<td>2.25</td>
<td>1</td>
<td>0.56</td>
<td>0.36</td>
<td>0.25</td>
<td>0.18</td>
</tr>
</tbody>
</table>

The interpretation is that the velocity is increasing. However, the acceleration is tending to zero. So, the car is approaching some cruising velocity.