Problem Definition

Problem 41. Investment A brokerage firm opens a new real estate investment plan for which the earnings are equivalent to continuous compounding at the rate of \(r \). The firm estimates that deposits from investors will create a net cash flow of \(Pt \) dollars, where \(t \) is the time in years. The rate of change in the total investment \(A \) is modeled by

\[
\frac{dA}{dt} = rA + Pt
\]

(a) Solve the differential equation and find the total investment \(A \) as a function of time, \(t \). Assume that \(A = 0 \) when \(t = 0 \).

(b) Find the total investment \(A \) after 10 years given that \(P = 500,000 \) and \(r = 9\% \).

Solution Step 1:

The first step is to rewrite the differential equation in the form of a first order linear differential equation. That is, rewrite the equation as

\[
\frac{dA}{dt} - rA = Pt
\]

In terms of the definition of a first order linear equation we can identify

\[
P(t) = -r
\]

and

\[
Q(t) = Pt
\]

It is unfortunate notation, but the \(P(t) \) in the integrating factor above is not the same as the \(P \) in the differential equation. However, if you keep that in mind we should be ok.

Solution Step 2:

The integrating factor is defined by

\[
u(t) = e^{\int -rt \, dt} = e^{-rt}
\]
Solution Step 3:

With the integrating factor computed, the solution is

\[
A(t) = \frac{1}{u(t)} \int Ptu(t)dt
\]

\[
= \frac{1}{e^{-rt}} \int Pte^{-rt}dt
\]

\[
= Pe^{rt} \int te^{-rt}dt
\]

At this point we need to compute the integral via an integration by parts.

Solution Step 4:

To compute the integral necessary for the solution we will need to apply our knowledge of integration by parts. Use \(u = t \) and \(dv = e^{-rt}dt \).

\[
\int te^{-rt}dt = t \left(\frac{1}{-r} e^{-rt} \right) - \int \left(-\frac{1}{r} e^{-rt} \right) dt
\]

\[
= \frac{-t}{r} e^{-rt} + \frac{1}{r} \int e^{-rt}dt
\]

\[
= \frac{-t}{r} e^{-rt} - \frac{1}{r^2} e^{-rt}
\]

\[
= \frac{-e^{-rt}}{r^2} (1 + rt)
\]

Solution Step 5:

The solution is of the form

\[
A(t) = Pe^{rt} \left(\frac{-e^{-rt}}{r^2} (1 + rt) + C \right)
\]

\[
= P \left(\frac{-1}{r^2} (1 + rt) + Ce^t \right)
\]

Solution Step 6:
The initial value that we have to apply is

\[
A(0) = P \left(-\frac{1}{r^2} (1 + r(0)) + Ce^{r(0)} \right) \\
= P \left(-\frac{1}{r^2} + C \right) = 0
\]

Then

\[
P \left(\frac{1}{r^2} + C \right) = 0
\]

which implies \(C = r^{-2} \). This means the solution can be written as

\[
A(t) = \frac{P}{r^2} \left(-(1 + rt) + e^{rt} \right) \\
= \frac{P}{r^2} \left(e^{rt} - (1 + rt) \right)
\]

Solution Step 7:

The last step is to approximate the amount in the investment given when \(P = 500,000 \) and \(r = 9\% \). In this case,

\[
A(t) = \frac{500000}{(0.09)^2} \left(e^{(0.09)t} - 1 - (0.09)t \right)
\]

and

\[
A(10) = \frac{500000}{(0.09)^2} \left(e^{(0.09)(10)} - 1 - (0.09)(10) \right) \approx 34,543,402
\]