RNA Degradation and NUSE Plots

Austin Bowles STAT 5570/6570 April 22, 2011

References

 Sections 3.4 and 3.5.1 of Bioinformatics and Computational Biology Solutions Using R and Bioconductor (Gentleman et al., 2005)

Notes 2.1 – Quality Checks

- Even after preprocessing to remove "noise" and make arrays comparable, some arrays may be "beyond correction."
- Visual checks of microarray quality (from Notes 2.1)
 - Array Images
 - Boxplots/Histograms
 - MA Plot
 - PLM Images/Residual Images
- Also:
 - RNA Degradation
 - Normalized Unscaled Standard Error (NUSE) Plots

Why RNA Degradation?

- Once RNA has reached the end of its useful life (i.e. it has participated in protein synthesis) it is "degraded" by cellular enzymes.
- Some arrays might have been prepared using a sample with "bad" RNA

-RNA that has been degraded past the point of providing useful information.

 We need a way to check whether or not our arrays have "good" RNA.

5' to 3' Ordering of Probesets

- A gene is represented by a *probeset* on a microarray.
- Each probeset consists of about 11 different PM probes.
- For each probeset on an array, the individual probes are numbered sequentially from the 5' end of the transcript to the 3' end.

RNA Degradation in Probesets

- Due to the specific mechanisms of RNA degradation, probe intensities should be systematically lower towards the 5' end of a transcript than towards the 3' end.
- This fact can be exploited for analyzing expression array data.

RNA Degradation for One Probeset

- Even with minimal degradation, we should see an upward trend in expression levels as probe number increases.
- The slope of this trend depends on the probeset and the extent of the degradation.
- We need a way to look at all probesets on an array.

The "AffyRNAdeg" Function

 Y_{ij} = the log transformed intensity for the j^{th} probe in the i^{th} probeset.

 $Y_{\cdot j}$ = the average log intensity at the j^{th} position, taken over all probesets in an array.

 Plotting the Y_{.j} vs. j shows a linear 3'/5' trend, even in an experiment with "good" RNA.

```
library(affy);library(affydata)
abatch.raw <- ReadAffy(celfile.path="F:\\R\\Data\\GSE5425")
hw.rnadeg.1 <- AffyRNAdeg(abatch.raw[,1])
plotAffyRNAdeg(hw.rnadeg.1, "neither")
legend(0,40, "Array 1",lty=1,col=4,lwd=2)</pre>
```


Rescaling

 To make these plots comparable across arrays, we first rescale them so that the standard errors of the rescaled means are approximately 1.

 $\hat{\sigma}_i$ = standard deviation for probes at position *j* in all *N* probesets

 $\hat{\sigma}_j / \sqrt{N} \approx$ standard error for mean intensity at position *j*

 $\frac{Y_{.j}}{\hat{\sigma}_j/\sqrt{N}}$ = rescaled mean with standard error ≈ 1

RNA degradation plot

The lines have been shifted from 8 the original data Mean Intensity : shifted and scaled for a clearer view, 20 but the slopes 4 remain unchanged. 8 3 9 0 2 8 10 0 6 4 plotAffyRNAdeg(hw.rnadeg) 5' <----> 3' Probe Number

What to look for:

- Slopes deviating from the group pattern.
- Remember Array #3 from our homework?

RNA degradation plot

cols <- rep(4,16);cols[3]<-2 plotAffyRNAdeg(hw.rnadeg,cols=cols) legend(0,60,c("Array 3","Others"),lty=1,col=c(2,4),lwd=2) summaryAffyRNAdeg(hw.rnadeg)</pre>

	GSM118665.CEL	GSM118666.CEL	GSM118667.CEL	GSM118668.CEL	GSM118669.CEL	GSM118671.CEL
slope	4.38e+00	4.21e+00	5.52e+00	4.58e+00	4.04e+00	4.22e+00
pvalue	1.12e-08	2.52e-10	4.43e-12	1.31e-08	3.07e-11	1.17e-08
	GSM118673.CEL	GSM118674.CEL	GSM118677.CEL	GSM118679.CEL	GSM118681.CEL	GSM118682.CEL
slope	4.01e+00	5.25e+00	4.14e+00	3.92e+00	4.00e+00	3.77e+00
pvalue	1.07e-09	3.62e-10	3.96e-08	3.70e-09	4.53e-08	1.01e-09
	GSM118684.CEL	GSM118686.CEL	GSM118687.CEL	GSM118689.CEL		
slope	4.95e+00	4.16e+00	3.58e+00	4.98e+00		
pvalue	2.61e-10	1.64e-08	9.56e-09	4.27e-10		

Array #3

Example: ALLMLL Data

ALLMLL Array 2

RNA degradation plot

 RNA Degradation Plots can help identify physical artifacts, but should <u>not</u> be used exclusively.

```
library(ALLMLL); data(MLL.B)
ALLdata <- MLL.B[,c(1:6,13,14)]
ALL.rnadeg <- AffyRNAdeg(ALLdata)
cols <- rep(4,8);cols[2]=2
plotAffyRNAdeg(ALL.rnadeg, cols=cols)
legend(0,17,c("Array 2","Others"),lty=1,col=c(2,4),lwd=2)</pre>
```

 Instead, we should look for derivations that suggest an array was prepared with "bad" RNA.

```
library(AmpAffyExample)
data(AmpData)
AmpData
#Array S3 had issues in lecture notes
sampleNames(AmpData) <- c("S1","S2","S3","A1","A2","A3")
AmpData.rnadeg <- AffyRNAdeg(AmpData)
par(mfrow=c(1,1))
plotAffyRNAdeg(AmpData.rnadeg, col=c(2,2,2,4,4,4))
legend(0,60,sampleNames(AmpData),lty=1,col=c(2,2,2,4,4,4),lwd=2)</pre>
```

Example: AmpAffyExample Data

 The steeper slopes for the A samples suggest that the RNA degradation has advanced further than for the S samples.

How steep is too steep?

- Unfortunately, different array types have different "normal" slopes. Experience will give the user a sense of what is typical for the different arrays.
- Instead, it is important to check for agreement within studies.
 - If the arrays in a study have similar slopes, then within gene comparisons may still be valid.
 - If the arrays have different degrees of RNA degradation (i.e. different slopes), extra bias is introduced into the experiment.

NUSE Plots

- Normalized Unscaled Standard Error Plots.
- Remember the Probe Level Model:

$$Y_{ijk} = \mu_{ik} + \alpha_{jk} + \varepsilon_{ijk}$$

Log-scale expression level for gene k on array i Probe Affinity Effect

• The R function fitPLM fits the Probe Level Model and other functions are available for accessing its output.

Standard Error Estimates

• We're interested in the Standard Error Estimates, SE($\hat{\mu}_{ik}$), obtained by the PLM fit.

Pset1 <- fitH	PLM(abatch.raw)	1	
##NOTE: rmaPl	LM(abatch.raw)	will not retur	n standard errors
se(Pset1)[1:0	5,1:3]		
	GSM118665.CEL	GSM118666.CEL	GSM118667.CEL
1415670 at	0.10637111	0.11596710	0.11225729
1415671 [—] at	0.11275118	0.12974944	0.11359738
1415672 [—] at	0.11465433	0.13025307	0.11655682
1415673 ⁻ at	0.12740979	0.14139465	0.12500363
1415674 ⁻ a at	0.08401818	0.09562223	0.08614656
1415675 ⁻ at	0.12846968	0.14957198	0.12846968

 Since variability differs between genes, we standardize these standard errors so that the median SE across arrays is 1 for each gene.

$$\text{NUSE}(\hat{\mu}_{ik}) = \frac{\text{SE}(\hat{\mu}_{ik})}{\text{med}_{i}(\text{SE}(\hat{\mu}_{ik}))}$$

- We visualize these NUSE values with a boxplot. This can be done with boxplot() or NUSE().
- When examining these plots, look for arrays with boxes that are significantly elevated or more spread out than other arrays. These indicate lower quality arrays.

HW Data

Raw Boxplot

NUSE Plot

Comparing median NUSE with Affymetrix quality metrics for the ALLMLL dataset. Array 2 is indicated on each plot.

Figure 3.8 courtesy of Course Text (Gentleman et al., 2005)

Summary

RNA Degradation

-Helps identify arrays with "bad" RNA.

-Can <u>sometimes</u> help identify arrays with physical artifacts.

-Samples with similar degradation can be used for valid comparisons.

NUSE Plots

-Can help identify lower quality arrays.

-Easier than Affymetrix quality standards to distinguish problematic arrays.