Tools for Preprocessing
Mass Spectrometry Data

Utah State University – Spring 2013
STAT 5570: Statistical Bioinformatics
Notes 5.1
Outline

• Introduction to Mass Spectrometry
• Issues in Preprocessing
• Recent Software Tools
• Sample Analysis
• Misc. Notes
Mass Spectrometry

- Technology to assess composition of a complex mixture of proteins and metabolites
- MALDI: matrix-assisted laser desorption and ionization
 - Biological sample mixed with a crystal-forming energy-absorbing matrix (EAM)
 - Mixture crystallizes on metal plate (chip or slide)
 - In a vacuum, plate hit with pulses from laser
 - Molecules in matrix are released, producing a gas plume of ions
 - Electric field accelerates ions into a flight tube towards a detector, recording time of flight

(Dijkstra 2008; Coombes et al. 2007)
SELDI-TOF

- Surface-enhanced laser desorption and ionization
- Special case of MALDI
- Ciphergen (Bio-Rad) ProteinChip: eight-spot array
- Surface of metal plate chemically modified to favor particular classes of proteins

(Coombes et al. 2007; Tibshirani et al. 2004; image from www.pasteur.fr)
Within narrow time intervals (1-4 nanoseconds), detector records the number of particles: time of flight.

Animation

www.learner.org/channel/courses/biology/archive/animations/hires/a_proteo3_h.html

(Coombes et al. 2007; Tibshirani et al. 2004; image from Yasui et al. 2003)
Other Separation Techniques

- Gas Chromatography (GC)
 - also called gas-liquid chromatography
- Liquid Chromatography (LC)
 - also called high performance liquid chromatography (HPLC)

Common Features:
- molecules pass through a chromatographic column
- time of passage depends on molecule characteristics
- coupled with a detector to record time-of-flight and report mass spectra (GC-MS, LC-MS)

Successful separation reduces number of overlapping peaks

(Dijkstra 2008)
Mass-to-charge (m/z) ratio

• Each molecule has a mass (m) and a charge (z)
• The m/z ratio affects the molecule’s velocity in the flight tube, and consequently its time of flight t
• Based on the law of energy conservation:

\[\frac{m}{z} = \alpha V (t - t_0)^2 + \beta \]

• Parameters \(t_0, \alpha, \) and \(\beta \) estimated using [instrument-specific] calibration data;
 V is electronvolt unit of energy

(Dijkstra 2008)
Sample spectra

Spectrum

Partial Spectrum

Intensity

m/z

Intensity

m/z
Two-Step Analysis Approach

1. Preprocess Mass Spectrometry Data
 - Identify peak locations and quantify each peak in each spectrum

2. Test for Differences
 - Similar to differential expression of genes between treatment and control

(Morris et al. 2005; Coombes et al. 2007)
Preprocessing Issues

- Calibration
- Filtering / Denoise Spectra
- Detrend / Remove Baseline from Spectra
- Normalization of Multiple Spectra
- Peak Detection
- Peak Alignment
- Peak Quantification

(Coombes et al. 2007)
Calibration

- Mapping observed time-of-flight to m/z values
- Experimentally:
 - create a sample containing a small number of [mass known] proteins
 - obtain spectrum from sample using the mass spectrometry instrument
- Parameters t_0, α, and β estimated using [instrument-specific] calibration data:
 \[
 \frac{m}{z} = \alpha V (t - t_0)^2 + \beta
 \]
- Also refers to finding common m/z values for multiple spectra (msPrepare function uses linear interpolation)

(Dijkstra 2008; Coombes et al. 2007; Morris et al. 2005)
Preprocessing Strategies

- **Choices:**
 - How to approach each preprocessing issue
 - Order of addressing each preprocessing issue

- **Some available software**
 - Commercial – usually manufacturer-specific
 - **R Packages**
 - msProcess (CRAN: Lixin Gong) – examples used here
 - PROcess (Bioconductor: Xiaochun Li)
 - caMassClass (CRAN: Jarek Tuszyński)
 - MassSpecWavelet (Bioconductor: Pan Du)
 - FTICRMS (CRAN: Don Barkauskas)
 - RProteomics (caBIG: Rich Haney)
Sample Data and Code

- Reproducibility of results in these slides
- R code included in these slides
- R Package msBreast: dataset of 96 protein mass spectra generated from a pooled sample of nipple aspirate fluid (NAF) from healthy breasts and breasts with cancer
- Observations with m/z below 950 eliminated
 - just noise from matrix molecules
 - these observations can be just saturation (too many ions hitting the detector so it can’t count them)

(Coombes et al. 2003; Coombes et al. 2005)
Sample Data Format

- An msSet object with a numeric vector of m/z values, a factor vector of spectra types, and a numeric matrix of intensities:
 - columns: 96 samples (spectra)
 - rows: 15466 m/z values
Visualize Two Spectra

used for all sample plots here unless otherwise noted

Spectrum 5

Spectrum 50

Partial Spectrum 5

Partial Spectrum 50
Filtering / Denoising Spectra

- Spectra contains random noise
 - Technical sources of variability
 - chemical
 - electronic
 - Remove by smoothing spectra

- Smoothing options:
 - Wavelet shrinkage (default)
 - Multiresolution decomposition (MRD)
 - Robust running median

(Coombes et al. 2007)
Here, MRD = original (not shown)
Denoising – what do options do?

- Wavelet shrinkage – discrete wavelet transform
 - calculate DWT (linear combination of functions)
 - shrink wavelet coefficients
 (calculated noise threshold and specified shrinkage function)
 - invert the DWT to get denoised version of series
- Multiresolution decomposition (noise ≈ 0 here)
 - calculate DWT
 - invert components
 - sum ‘non-noisy’ components
- Robust running median
 - Tukey’s 3RS3R:
 - repeat running medians of length 3 to convergence
 - split horizontal stretches of length 2 or 3
 - repeat running medians of length 3 to convergence
 - ‘twiced’: add smoothed residuals to the smoothed values
Local Noise Estimation

- May be interested in “where” noise is
- local noise = (smoothed noise)
- Smoothing options:
 - spline (default) – cubic spline interpolation
 - supsmu – Friedman’s “super smoother”
 - ksmooth – kernel regression smoother
 - loess – local polynomial regression smoother
 - mean – moving average
Local Noise Estimation

(R code chunk 4)
Detrend / Baseline Subtraction

- Technical artifacts of mass spectrometry data:
 - “a cloud of matrix molecules hitting the detector” at early times
 - detector [or ion] overload
 - chemical noise in EAM
- No model for full generalizability of baseline, only required to be smooth
- Observed signal at time t:

$$f(t) = B(t) + N \cdot S(t) + \varepsilon(t)$$

(Li et al. 2005; Morris et al. 2005; Coombes et al. 2007)
Baseline Options

- loess (default) – local polynomial regression smoother
- spline – cubic spline interpolation
- supsmu – Friedman’s super-smoother
- approx – linear or constant interpolation of local minima
- monotone – cumulative minimum
- mrd (multiresolution decomposition)

Errors with all these (can avoid); can give negative signal

(Coombes et al. 2005; Randolph & Yasui 2006)
(check tuning / smoothing parameters in these options)
Intensity Normalization

- Make comparisons of multiple spectra meaningful
- Basic assumption:
 - total amount of protein desorbed from sample plate should be the same for all samples
 - amount of protein desorbed: TIC (total ion current)
- Normalization options ($Y_i = \text{vector of intensities}$)
 - tic (default) – total ion current
 - all spectra have same area under curve
 - for spectra i: $Y_i' = \left(\frac{Y_i}{\text{sum}(Y_i)}\right) \cdot \text{median}(\text{sum}(Y_i))$
 - snv – standard normal variate
 - all spectra have same mean and standard deviation
 - for spectra i: $Y_i' = \left(\frac{Y_i - \text{mean}(Y_i)}{\text{sd}(Y_i)}\right)$

(Morris et al. 2005; Randolph & Yasui 2006)
TIC Normalization Factor: 1.611

![Graph showing TIC normalization results with different normalization techniques: de-trended, TIC-normalized, and SNV-normalized.](R code chunk 6)
Normalization and Quality

- Spectra with extreme normalization factors may suggest poor quality
- May need to eliminate some spectra (or arrays)

(Bio-Rad 2008)
Peak Detection

• Need to detect peaks in sets of spectra

• Options:
 • simple – a local maxima (over a span of 3 sites) whose signal-to-[local]noise (snr) is at least 2
 • search (elevated intensity) – simple + higher than estimated average background [across spectra] at site
 • cwt – continuous wavelet transform; no denoising or detrending necessary
 • mrd – multiresolution decomposition
 • must have used MRD at denoising step

(Coombes et al. 2005; Tibshirani et al. 2004; Du et al. 2006; Randolph & Yasui 2006)
closed circles identify detected peaks here
intervals based on nearest local minima at least some number (41) of sites away
random seed matters here
blue line represents ‘average background’
Peak Alignment

- Align detected peaks from multiple spectra (using only detected peaks with signal-to-noise above some threshold)
- Options:
 - cluster – 1-dim. hierarchical clustering, with cuts between clusters based on technology precision (Coombes et al. 2005; Tibshirani et al. 2004)
 - gap – adjacent peaks joined if within technology precision
 - vote – iterative peak clustering (Yasui et al. 2003)
 - mrd (Randolph & Yasui 2006)
 - smooth histogram of peak locations for all spectra
 - take midpoints of valleys as common locations
- m/z on log-scale at this step (roughly constant peak width; Tibshirani et al. 2004)
- Precision: ±0.3% mass drift for SELDI data
• here, spectra 2-5 (bottom to top)
• circles identify detected peaks
• 239 common peaks aligned
• intervals based on alignment algorithm

(R code chunk 9)
Peak Quantification

- Peak area is assumed to be proportional to the corresponding detected numbers of molecules

- Based on common set of peak classes, quantify each peak by one of:
 - intensity
 - returns matrix of maximum peak intensities for each spectrum within each common peak
 - count
 - returns matrix of number of peaks for each spectrum within each common peak

(Dijkstra 2008)
Visualize Peak Quantities

Spectrum 5

Raw Intensity

Peak Quantified

m/z

m/z

(R code chunk 10)
24 original spectra (3 arrays, each used all 8 spots)

(239 common peaks quantified)

subsequent experiments (36 arrays, each used 2 spots)

(Coombes et al. 2003)
Peak Identification

• Determining the exact species of protein [or metabolite] molecule that caused a peak to be detected
• Requires additional experimentation and database searches
• Have to compare results with fragmentation patterns of known proteins [or metabolites]
• Single protein [or metabolite] may appear as more than one peak due to complexes and/or multiple charges

(Coombes et al. 2007; Dijkstra 2008)
A Sidebar Caveat

- Original time (tof) values are evenly spaced
- m/z values not evenly spaced
 → may give disproportionate weight to some m/z values at normalization (AUC)

\[\frac{m}{z} = \alpha V (t - t_0)^2 + \beta \]

(Coombes et al. 2007; Dijkstra 2008)
Alternative View on time vs. m/z Scale

- If replace m/z with square root (i.e., preprocess on “time” scale, code next slide):
 - no difference in TIC-normalization
 - would affect detrending (except for monotone)
- Could affect peak detection and peak alignment
- But, at peak alignment step, log-scale m/z:
 - supposed to make peak widths roughly constant
 - max. intensity means something similar to peak area
- Up through Peak Detection step, everything’s basically the same (although alternative seeds may cause slight differences)
Mean Spectrum for Detection & Alignment

- “Peak detection using the mean spectrum is superior to methods that work with individual spectra and then match or bin peaks across spectra”
 - increases sensitivity in peak detection (especially low-intensity peaks)
 - avoids messy and error-prone peak alignment
 - spectra must first be aligned [on time scale]
 - small misalignments okay, just broaden peaks in mean
- But – when to take mean?
 - before or after detrending, denoising, and normalizing?
 - no definitive answer yet, but after seems reasonable

(Coombes et al. 2007; Morris et al. 2005)
239 peaks

96 peaks
Sample Analysis, Start to Finish

- Same Example: 96 protein mass spectra generated from a pooled sample of nipple aspirate fluid (NAF) from healthy breasts and breasts with cancer
- Starting point: 96 separate .txt files with two space-delimited columns (m/z, intensity) and no header row, in same directory (C:/jrstevens/DataFiles/NAFms)
- msProcess can also import other formats

```r
# Install package from source (recall slide 18 of Notes 2.4)
# http://cran.r-project.org/web/packages/msBreast/
install.packages("C:\folder\msProcess_1.0.7.tar.gz",
repos=NULL, type="source")
```

(R code chunk 13)
Startup
print(date()); library(msProcess)

read in .txt files to create msList object
filepath <- "C:/jrstevens/DataFiles/NAFms"
z.list <- msImport(path=filepath, pattern=".txt")
convert msList object to msSet object
z <- msPrepare(z.list, mass.min=950, data.name='example')
define type of spectra
use.type <- rep("QC",96); z$type <- as.factor(use.type)
(then z is equivalent to the Breast2003QC msSet object)

preprocess
print(date())
z1 <- msDenoise(z,FUN="wavelet")
z2 <- msNoise(z1,FUN="spline")
z3 <- msDetrend(z2, FUN="monotone")
z4 <- msNormalize(z3, FUN="tic")
set.seed(1234)
z5 <- msPeak(z4, FUN="search")
z6 <- msAlign(z5, FUN="cluster",
 snr.thresh=10, mz.precision=0.003)
z7 <- msQuantify(z6, measure="intensity")
print(date())
R objects of interest (pseudo-results)

\[
z$\text{intensity} = z1$\text{intensity} + z1$\text{noise}
\]
\[
z2$\text{local.noise} = \text{spline}(|z1$\text{noise}|) \quad \text{(by spectra)}
\]
\[
z2$\text{intensity} = z3$\text{intensity} + z3$\text{baseline}
\]
\[
z4$\text{intensity} = z3$\text{intensity} \quad \text{(transformed)}
\]
\[
z5$\text{peak.list}[[i]] = \text{data.frame with locations and ranges of peaks for spectrum i}
\]
\[
z6$\text{peak.class} = \text{matrix with locations and ranges of peaks for all spectra}
\]
\[
z7$\text{peak.matrix} = \text{matrix that quantifies common peaks (col) for each spectrum (row)}
\]
\[
\text{colnames(z7$peak.matrix)} = \text{locations (in m/z) of common peaks}
\]
\[
\text{(see z6$peak.class for ranges of these peaks)}
\]
visualize result
library(RColorBrewer)
blues.ramp <- colorRampPalette(brewer.pal(5,"Blues")[-2])

pmatrix <- t(z7$peak.matrix)

image(seq(numRows(pmatrix)), seq(ncol(pmatrix)), pmatrix,
 xaxs = "i", yaxs = "i", main = "Peak (Intensity) Matrix",
 xlab = "Peak Class Index", ylab = "Spectrum Index",
 col=blues.ramp(200))
Final object of interest:

\[z7$peak.matrix \]

[row=spectrum (sample),
 column=peak,]

colnames = m/z of peak

(R code chunk 14)
 Misc. Notes

- May consider log-transforming intensities prior to preprocessing (Morris et al. 2005)
- After preprocessing, may refine list of peaks by identifying some whose m/z values are “nearly exact multiples of others and hence potentially represent the same protein” (msCharge function in msProcess package)
- After preprocessing, note that peaks are not independent, a casual assumption in the usual per-gene tests for differential expression with microarray data (Coombes et al. 2007)
- Denoising more important for MALDI than SELDI data (smooth over “isotopic envelope”) (Tibshirani et al. 2004)
MALDI produces mainly singly-charged ions (so can think of m rather than m/z of molecule) (Kaltenbach et al. 2007)

Other quality checks of spectra are available (Coombes et al. 2003: distance from first principal components, implemented in msQualify function in msProcess package)

Non-monotone baseline may be more appropriate when raw spectra are not generally monotone decreasing (Li et al. 2005)

No clear “best” preprocessing choices, but many “reasonable” ones

Coombes et al. (2007) Pre-Processing Mass Spectrometry Data. Ch. 4 in Fundamentals of Data Mining in Genomics and Proteomics, ed. by Dubitzky et al. Springer.

References

- R Development Core Team (2007). R: A language and environment for statistical computing. (www.R-project.org)