Intro. to Tests for Differential Expression (Part 1)

Utah State University – Spring 2014
STAT 5570: Statistical Bioinformatics
Notes 3.3
References

- Chapters 14 & 23 of Bioconductor Monograph (course text)
- Tusher, Tibshirani, and Chu (2001). PNAS 98(9):5116-5121
Basic idea of differential expression (DE)

- “Observe” gene expression in different conditions – healthy vs. diseased, e.g.
- Decide which genes’ expression levels are changing significantly between conditions
- Target those genes – to halt disease, e.g.
- Note: there are far too many ways to test for DE to present here – we will just look at major themes of most of them, and focus on implementing a few
Miscellaneous statistical issues

- Test each gene individually
 - Dependence structure among genes not well-understood: (co-regulation or co-expression)
 - Ignore coregulation – first, one at a time

- Scale of data
 - Magnitude of change depends on scale
 - In general: log scale is “approximately right”
 - Variance stabilization transformation can help
Simple / Naïve test of DE

- Observe gene expression levels under two conditions
 \[Y_{ijk} = \log \text{expr. level of gene k in replicate j of "treatment" i} \]

- Calculate: average log fold change
 \[\bar{Y}_{i.k} = \text{ave. log expr. for gene k in treatment i} \]
 \[LFC_k = \bar{Y}_{2.k} - \bar{Y}_{1.k} = \text{ave. log fold change for gene k} \]

- Make a cut-off: R
 Gene k is "significant t" if \[|LFC_k| > R \]
What does naïve test do?

- Estimate degree of differential expression:
 - LFC > 0 for “up-regulated” genes
 - LFC < 0 for “down-regulated” genes

- Identifies genes with largest observed change

- Ignores: variability
 - cannot really test for “significance”
 - what if larger LFC have large variability?
 - then not necessarily significant
How to take variability into account?

- Build some test statistic on a per-gene basis

- How do we “usually” test for differences between two groups or samples?
 two-sample t-test

- Test statistic:

\[
t_k = \frac{\bar{Y}_{2.k} - \bar{Y}_{1.k}}{s_k} = \frac{LFC_k}{s_k}
\]

 pooled SD
How to use this to “test” for DE?

- What is being tested?
 - Null: No change for gene k

- Under null, $t_k \sim t$ dist. with n_k d.f.
 - “parametric” assumption

- But what is needed to do this?
 - “Large” sample size
 - Estimate $\sigma_k = “pop. SD”$ for gene k (example: s_k)
What if we don’t have enough?

- Probably don’t – even dozens of arrays may not suffice

Two main problems:
- 1. Estimate σ_k (especially for small sample size)
- 2. Appropriate sampling distribution of test stat.

Basic solutions:
- 1. To estimate σ_k: Pool information across genes
- 2. For comparison against ‘sampling distribution’:
 - use parametric assumption on “improved” test stat.
 - use non-parametric methods – resampling / permuting
Ex 1: Significance Analysis of Microarrays (SAM)

- “Relative difference” test statistic – for gene k

\[d_k = \frac{\bar{Y}_{2,k} - \bar{Y}_{1,k}}{s_k + s_0} \]

\(s_0 \) = "tuning" parameter to ensure that var. of \(d_k \) is indep. of expression.

- How to choose tuning parameter:
 Compute CV of \(d_k \) as a function of \(s_k \) in moving windows across data, and pick \(s_0 \) to minimize CV
 (see SAM users guide and technical document for details)
SAM and test for significance

Rather than make distributional assumptions:
- Sort $d_{(1)}$, \ldots, $d_{(K)}$
- Permute sample labels and re-calculate and sort $d_{p(1)}$, \ldots, $d_{p(K)}$
- P-value: proportion of permutations where $d_{p(k)}$ is more extreme than $d_{(k)}$
- Let $d_{E(k)}$ be the expected relative difference: average of $d_{p(k)}$ over all permutations
- **SAM Plot**: plot $d_{E(k)}$ vs. $d_{(k)}$ – look at how far apart they are
- For a given “threshold” Δ, look at genes further away ($d_{E(k)}$ vs. $d_{(k)}$)
 - Generate upper and lower cut-offs for $d_{(k)}$
 - Calculate average (median) # of “significant” genes using same cut-offs on all permutations – this is the estimate of “falsely significant genes”
- Choose Δ based on: desired FDR
SAM plot

<table>
<thead>
<tr>
<th>delta</th>
<th># called</th>
<th>median FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>4143</td>
<td>0.447</td>
</tr>
<tr>
<td>0.011</td>
<td>4121</td>
<td>0.442</td>
</tr>
<tr>
<td>0.043</td>
<td>4043</td>
<td>0.434</td>
</tr>
<tr>
<td>0.097</td>
<td>3937</td>
<td>0.416</td>
</tr>
<tr>
<td>0.173</td>
<td>3652</td>
<td>0.369</td>
</tr>
<tr>
<td>0.270</td>
<td>3321</td>
<td>0.304</td>
</tr>
<tr>
<td>0.389</td>
<td>2929</td>
<td>0.231</td>
</tr>
<tr>
<td>0.529</td>
<td>2520</td>
<td>0.156</td>
</tr>
<tr>
<td>0.691</td>
<td>2164</td>
<td>0.093</td>
</tr>
<tr>
<td>0.875</td>
<td>1777</td>
<td>0.047</td>
</tr>
<tr>
<td>1.080</td>
<td>1465</td>
<td>0.019</td>
</tr>
<tr>
<td>1.307</td>
<td>1185</td>
<td>0.006</td>
</tr>
<tr>
<td>1.555</td>
<td>966</td>
<td>0.002</td>
</tr>
<tr>
<td>1.825</td>
<td>777</td>
<td>0.001</td>
</tr>
</tbody>
</table>

...
First prepare objects for DE test

load data
library(affy); library(ALL); data(ALL)

obtain relevant subset of data; similar Notes 3.2 p. 11
(filter genes on raw scale, then return to log scale)
library(geneFilter); e.mat <- 2^exprs(ALL)
ffun <- filterfun(pOverA(0.20,100))
t.filt <- geneFilter(e.mat,ffun)
small.eiset <- log2(e.mat[t.filt,])
dim(small.eiset) # 4305 genes, 128 arrays

define comparison to be tested
first 95 are B-cell, then last 33 are T-cell
T.cell <- c(rep(0,95),rep(1,33))
0=B-cell, 1=T-cell
Prepare objects for SAM; y must be coded 1/2 (not 0/1)
library(samr)

gn <- rownames(small.eset)
data <- list(x=small.eset, y=(T.cell+1),
 geneid=gn, genenames=gn, logged2=TRUE)

Call samr - this can take several minutes
samr.obj <- samr(data, resp.type="Two class unpaired",
 nperms=1000, random.seed=1234)

Choose delta
delta.table <- samr.compute.delta.table(samr.obj)
round(delta.table[,c(1,4,5)],3)

Visualize results
samr.plot(samr.obj,del=.87)
Get names of significant genes
SAM.tab <- samr.compute.siggenes.table(samr.obj, .87,
 data, delta.table)

gn.up <- SAM.tab$genes.up[,3]

 gn.dn <- SAM.tab$genes.lo[,3]

 gn.SAM <- c(gn.up, gn.dn)

length(gn.SAM) # 1783 genes called sig. by SAM
Ex 2: maxT

- With larger # of arrays (sample), maybe don’t worry so much about: “stability” of variability estimate
- Calculate a t-statistic for each gene, then permute sample labels and re-calculate
 - Permutations based on null: sample labels don’t matter
 - Welch’s: two samples with unequal variances
- P-value for a gene = proportion of permutations that resulted in a more extreme statistic than the original (observed) t-statistic
maxT in R

Look at maxT procedure; data on log scale

```
library(multtest)
resT <- mt.maxT(small.eset, cl=T.cell, B=1000)
```

look at raw P-values
```
raw.P <- resT$rawp
hist(raw.P, col='yellow', main='maxT raw P-values')
```

make FDR correction to P-values
```
adj.p <- p.adjust(raw.P, method='BH')
```

find significant genes
```
t.sig <- adj.p < 0.05
gn.T <- rownames(resT)[t.sig]
length(gn.T) # 1501 genes
```

(cl = classlabel)
Get main results in single data.frame
SAM.frame <- data.frame(gn=names(sort(samr.obj$tt)),
 SAM.diff=abs(sort(samr.obj$tt)-samr.obj$evo))
maxT.frame <- data.frame(gn=rownames(resT), maxT.p=adj.p)
comb <- merge(SAM.frame,maxT.frame)

Visualize comparison
library(geneplotter)
library(RColorBrewer)
green.ramp <- colorRampPalette(brewer.pal(9,"Greens")[3:9])
dCol <- densCols(log(comb$maxT.p), log(comb$SAM.diff),
 colramp=green.ramp)
plot(comb$maxT.p, comb$SAM.diff, log='xy', pch=16,
 cex.lab=1.5,xlab='maxT adjusted P-value',
 ylab='|SAM difference statistic|', col=dCol)
abline(v=.05,lty=2)
abline(h=.87,lty=2)
A note on permutations

- Both SAM and maxT require permutations

- How many permutations are:
 - Possible?
 - Easy case: compare 2 groups with sizes n_1 and n_2
 - Permuting sample labels is same is rearranging $n=n_1+n_2$ items with n_1 of one kind and n_2 of another:
 \[
 \text{Multinomial coefficient: } \frac{(n_1 + n_2)!}{n_1!n_2!}
 \]
 - Necessary? – hard to say, but probably: thousands

- In general: do as many as you can afford, especially if total possible is at all manageable