Quality Checks for Microarray Data

Utah State University – Spring 2014
STAT 5570: Statistical Bioinformatics
Notes 2.1
References & Reminder

- Chapter 3 of Bioconductor Monograph (course text)

- (Same issues here recur in other technologies)
Recall Background Correction and Normalization

- Why background correction? - to remove “noise” and “local artifacts”

- Why normalization? - to make arrays more comparable

- What is the intended effect of both steps? - to make spot-level data comparable - so differences are biologically meaningful
Is it enough?

- Even after background correction and normalization - some arrays are “beyond correction”

- How to assess this?
 - Sometimes obvious - array image has glaring problem
 - Sometimes more subtle - a “local” problem on one array

- Rely on – graphical checks
Example data: ALL MLL

- A large acute lymphoblastic leukemia (ALL) study using the HGU133A and HGU133B (human) arrays

- A subset of the ALL data is provided in the MLL.B AffyBatch object

- Let’s just look at 8 arrays
library(affy)
library(ALLMLLL)
data(MLL.B)
Data <- MLL.B[,c(1:6,13,14)]

par(mfrow=c(3,3))
for(i in 1:8)
{
 image(Data[,,i], main=paste('Array',i),
 cex.main=2)
}
Bimodality suggests - a spatial artifact
library(RColorBrewer)
par(mfrow=c(2,2))
cols <- rev(brewer.pal(8, "Set2"))

hist(Data,col=cols, lty=1,
 xlab="Log2 intensities",lwd=2)
legend(12,1.1:8,lty=1,col=cols,lwd=2)

hist(Data[,c(2,8)],col=cols[c(2,8)],
 lty=c(1,2),xlab="Log 2 intensities",lwd=2)
legend(12,0.6,c(2,8),lty=c(1,2),
 col=cols[c(2,8)],lwd=2)
MA plot – compare arrays

- MA plot: M=Y-X vs. A=0.5(Y+X)
 - Rotate and scale Y vs. X scatterplot
 - For log-scale expression on arrays Y and X:
 - M = log fold-change (Y vs. X)
 - A = average expression

- For comparing multiple arrays, create a “pseudo-array” reference by taking the median for each probe across all arrays

- Loess curve:
 - locally weighted polynomial regression
MA plot

```R
par(mfrow=c(3,3))
MAplot(Data, loess.col='white', cex=1, cex.main=0.5)
# this can take # a few minutes

Quality problems most apparent when:
- Loess line oscillates much
- M-variability is much greater than other arrays
```
PLM Image

- Probe Level Model
- Recall RMA model (Notes 1.4):

\[Y_{ijk} = \mu_{ik} + \alpha_{jk} + \varepsilon_{ijk} \]

- Use robust measure to estimate model parameters
- To identify quality problems, look at residuals
Look for:
- Substantial artifacts
- Systematic patterns
library(affyPLM)
library(AmpAffyExample)
data(AmpData)
par(mfrow=c(2,2))

Fit RMA PLM to data; could also use fitPLM function
Pset1 <- rmaPLM(AmpData)
image(AmpData[,3],main='default image', cex.main=2)
image(Pset1, type="resids", which=3)
image(Pset1, type="sign.resids",which=3)

Fit RMA PLM to other data; look at problem array
Pset2 <- rmaPLM(Data)
image(Pset2, type="sign.resids",which=2)

Could also consider type="pos.resids"
or type="neg.resids"
Summary

- Use graphical checks to look at microarray data quality
 - Image
 - Histogram
 - MA plot
 - PLM (residual) image

- Also consider:
 - Boxplots
 - RNA degradation (3’/5’ ratios)
 - Normalized Unscaled Standard Error (NUSE) plot