Initial Case Study

(Gene Expression in Parkinson’s Disease)

Utah State University – Spring 2014
STAT 5570: Statistical Bioinformatics
Notes 1.0
Gene Expression Crashcourse

- Technology takes a snap-shot of the activity of all genes at once; estimate each gene’s expression level in each sample
- Want to identify genes that behave differently in one group (treatment, diseased) compared to another (control, healthy)
- Many statistical methods proposed
- Goal: If know which genes affect disease progression, maybe develop drug to stop their activity.
 (Or, identify predictive / prognostic genes.)
Typical Statistical Analysis Process

- Obtain an array image for each subject, and convert image to quantitative measures of genes’ expression - or – sequence mRNA fragments and map to genes (to quantify genes’ expression)

- For each gene –
 - compare expression level between treatment conditions (healthy vs. diseased, for example)
 - determine whether gene’s expression values predict clinical outcome

- For groups of genes –
 - find combinations (profiles or signatures) that significantly predict clinical outcome
 - find similarities (molecular function, e.g.) among significant genes

- “Validate” genes – qRT-PCR, for example.

(Similar process for newer technologies)
Example: Parkinson’s Disease

- **Scherzer et al., Jan. 2007 PNAS**

- Whole blood samples from 105 subjects
 - 50 Parkinson’s disease (PD) patients
 - 23 Alzheimer’s disease (AD) patients
 - 10 other neurodegenerative (ND) patients
 - progressive supranuclear palsy (PSP)
 - multiple system atrophy (MSA)
 - corticobasal degeneration (CBD)
 - essential tremor (ET)
 - 22 healthy controls (H)

- **Goal:**
 - find a set of genes (out of 22,000+) whose expression levels (from a laboratory blood test) can reliably predict PD status

- **Results:**
 - identified 8 genes
A brief statistical view

- For gene k on array (or subject) i:

\[Y_{i,k} = \beta_{k,0} + \beta_{k,1} T_i + \varepsilon_{i,k}, \quad \text{Var}[\varepsilon_{i,k}] = \sigma_k^2 \]

expression level (log scale) \quad \text{treatment effect} \quad \text{indicator (0/1) of “treatment” level (gene-specific differential expression, DE)}

- What if there are more covariates than just “treatment”?

\[Y_{i,k} = \beta_{k,0} + \beta_{k,1} T_i + \beta_{k,\text{sex}} S_i + \varepsilon_{i,k} \]

- Analysis: usually some variant of ANOVA or t-test

\[\hat{\beta} = \left(X^T X \right)^{-1} X^T Y \] (inference often based on permutation tests)

Estimate by sharing info. across genes
A brief statistical view, continued:

- Another perspective:
 \[p_i = P(T_i = 1) \quad \text{probability of disease status} \]
 \[\log \frac{p_i}{1 - p_i} = \alpha + \sum_{k=1}^{m} Y_{i,k} \beta_k + \beta_{\text{sex}} S_i \]
 cumulative effect of [possibly multiple] genes

- Find significant subset of genes \(k=1,\ldots,m \)

- Analysis: usually some variant of logistic regression (sharing info. across genes)
Example – Alzheimer’s Disease

- Partial data from Scherzer et al. (2007)
- Top 15 genes in predicting AD vs. H

(But what do these genes have in common?)

[Expression value on scale: dark orange (low) to light (mid) to dark purple (high)]
Statistical Issues

- “Preprocessing” data (technology output to useful data)
 - Microarrays
 - Next-generation sequencing
 - Mass Spectrometry
- Distribution of data (& appropriate tests)
 - Continuous \rightarrow Normal / Nonparametric
 - Count \rightarrow Poisson / Negative Binomial
- Multiple hypothesis testing (individual & groups)
- Effective Communication
 - Visualization
 - Interactive Reports
 - “Characterization” of results \rightarrow more statistical issues