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LJUSTERNIK-SCHNIRELMAN THEORY
IN PARTIALLY ORDERED HILBERT SPACES

SHUJIE LI AND ZHI-QIANG WANG

ABSTRACT. We present several variants of Ljusternik-Schnirelman type theo-
rems in partially ordered Hilbert spaces, which assert the locations of the criti-
cal points constructed by the minimax method in terms of the order structures.
These results are applied to nonlinear Dirichlet boundary value problems to
obtain the multiplicity of sign-changing solutions.

1. INTRODUCTION

The minimax method has been used extensively in constructing critical points
for functionals defined in Hilbert and Banach spaces as solutions of nonlinear par-
tial differential equations. In particular, when the problems possess symmetry,
one constructs multiple critical points by the minimax method; this is the general
Ljusternik-Schnirelman type theory (e.g., [7], [35], [42], [43], [44], [21], [32]). When
an order structure is present, one can also use fixed point theory, degree arguments
and the variational method to construct solutions of differential equations (see for
example [3], [15], [16], [22], [23], [33], [34], and references therein), but most of this
work has been for positive solutions. In order to study the structure of nodal solu-
tions (i.e., sign-changing solutions), efforts have been made in recent years to link
critical point theory with the order structure of the function space (see [8], [9], [10],
[12], [13], [17], [25], [26], [27], [39], and references therein). However, little work has
been done for invariant functionals under group actions when one expects to obtain
multiplicity of critical points. One of the motives of this paper is, in the setting
of Ljusternik-Schnirelman type theory, to establish relations between critical points
given by the minimax method and the order structure of the spaces. For example,
we shall establish a relation between the critical points given by Clark’s Theorem
(which is a variant of Ljusternik-Schnirelman theory) and the positive and negative
cones in the space. The classical result of Clark is the following.

Theorem A ([21]). Let E be a Hilbert space, and assume that ® € C'(E,R) sat-
isfies the (PS) condition and is even and bounded from below. Assume ®(0) = 0,
and there is an n-dimensional sphere S, centered at 0 with radius p > 0 such that
supsg, ®(z) < 0. Then ® has at least n pairs of critical points with negative critical
values.
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Now, suppose there is a closed convex cone P C F. Then one may ask what
is the location of these n pairs of critical points in relation with Pr and —Pg.
Under suitable conditions, we shall prove that ® has at least one pair of critical
points in Pg and —Pg, and that ® has at least (n — 1) pairs of critical points in
FE\ (Pg U—Pg). Several general results of this type will be given in Section 2; see
Theorems 2.1, 2.2, 2.3, and 2.4, as well as some remarks on possible generalizations.
Another motive of our work in this paper is to continue our study in [39] and clarify
the locations of critical points produced by linking type theorems in relation with
the order structure. With the order structure built in, the geometric conditions
required in many linking type theorems can be weakened. This turns out to be
very important and useful, because in many applications the technical verification
of a linking structure is tedious and troublesome. This type of results will be given
in Section 3. Finally, our theory is not confined to situations of cone structures; we
may consider the locations of critical points in relation to some given invariant sets
of the flow.

In Section 4 we apply our theory to nonlinear elliptic Dirichlet problems. Many
known results in the literature can be restated and sharpened to assert the existence
of sign-changing solutions. Our novelty is to establish multiplicity of sign-changing
solutions. We only select a number of classical problems to show the applications
of our theory, and shall not seek optimal conditions for the results.
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2. LJUSTERNIK-SCHNIRELMAN THEORY REVISITED

Let us start with Clark’s theorem as stated in Section 1, which gives multiplicity
results for solutions when applied to nonlinear elliptic boundary value problems.
One question arising naturally is, among these solutions, how many are one sign
solutions (positive and negative) and how many are sign-changing ones? In this
section we prove an abstract generalization of Clark’s Theorem, which gives the
location of the critical points with respect to a pair of cones in the space. In order
to do this in an abstract way, we need to introduce additional structure in the
space and impose some conditions, although these conditions are all satisfied very
naturally in applications to elliptic boundary value problems, as we shall show in
Section 4.

Let F be a Hilbert space and X C F a Banach space densely embedded in F.
Assume that F has a closed convex cone Pg and that P := Pg N X has interior

points in X i.e., P :1% UOP, with ]% the interior and 9P the boundary of P in X.
We shall use ||-|| and || -||x to denote the norms in E and X respectively. We also
use dg(-,-) and dx(-, ) to denote the distances in F and X.
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Let ® € C?(E,R). We use the following notation: for a,b,c € R, K = K(®) =
{z € E|®'(z) = 0}, ®° = {z € E|®(x) < b}, K. = {z € E|®(z) = ¢, ®(z) = 0},
K([a,b]) = {z € E|®(z) € [a,b],®'(x) = 0}.

Let us consider a normalized negative gradient flow o for @ which is well defined
for (t,u) € R x E:

d _ V&(o(t,u))
(2.1) a0 (L ¥) =~ e (att o
o(t,u) = u.

The first assumption we make is
(®) K(®) C X and V@ : X — X is O
Under (@), we have o(¢, ) € X for € X, and ¢ is continuous in (¢,z) € Rx X.

Definition 2.1. With the flow o, we call a subset A C FE an invariant set if
o(t,A) C Afort>0.

Definition 2.2. Let W C X be an invariant set under . We say W is an admissi-

o]
ble invariant set for @ if (a) W is the closure of an open set in X, i.e., W =W UOW;
(b) if u, = o(ts,v) for some v ¢ W and u,, — uin F as t,, — oo, for some u € K,
then u, — win X; (c) if u, € K N W is such that u, — w in F, then u, — u in

X; (d) for any u € OW \ K, o(t, u) EI/(I)/fort>O.

Theorem 2.1. Let ® € C*(E,R), and let (®) hold. Assume ® is even, bounded
from below, ®(0) = 0, and satisfies the (PS) condition. Assume that the positive
cone P is an admissible invariant set for ® and K.NOP = 0 for all c < 0. Suppose
there 1s a linear subspace F' C X with dim F' = n such that suppyyp, ®(x) <0 for
some p > 0, where B, = {z € E|||z|| < p}. Then ® has at least n pairs of critical

points with negative critical values. More precisely:
o]

(i) Ifinfp ® < infg @, then ® has al least one pair of critical points in Pg U(- P)
and at least n — 1 pairs of critical poinis in X \ (P U—P).
o]

(ii) Ifinfg ® < infp ®, then ® has at least one pair of critical poinis in Pg U(- P)
and at least n pairs of critical points in X \ (P U —P).

In order to prove this theorem we need the notion of genus (e.g., [43], [44]). Let
Yx ={A C X|Ais closed in X, A = —A},

and let ix(A) denote the genus of A, which is defined as the least integer n such
that there exists an odd continuous map ¢ := A — S?~!. Here the continuity is
with respect to the topology in X. With the topology in F, we may also define
the genus of A € ¥ = {A C E|A is closed in F; A = —A}. For preciseness, we
use ix(-) and ig(-) when we use different norms. We refer to [43] and [44] for the
following properties of genus.

Proposition 2.1. Let A, B € x, and let h € C(X, X) be an odd homeomorphism.
Then:

(i) A C B = ix(A) < ix (B);

(ii) ix (AU B) <ix(A) +ix(B);

(i) ix (A) < ix (h(A));

(iv) if A is compact, there exists a neighborhood N € Xx such that A C]ng N
and Zx(N) = ix(A),'

(v) if F is a linear subspace in X with dimF = n, and if A C F is bounded,
open and symmetric, then ix (0A) = n.
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This lemma is still true when we replace X x by X g, with obvious modifications.
We need some preliminaries. We shall use the notation

S=X\(PU-P).
Lemma 2.1. If A€ Xx with 2 <ix(A) < oo, then ANS # 0.

Proof. TANS =0, AC (PU—-P)\{0}. Then A = Ay UA_ with Ay C P\ {0},
A_ C =P\ {0}. We easily see that ix (A) = 1, a contradiction. O

Lemma 2.2. Let A€ Xg. Then ANX € ¥x and ig(A) > ix(ANX).

Proof. Let z, € ANX be such that z, — z € X in X. Then, due to the embedding
e: X —F x,—xmFE. Thenzec A,and x € ANX. So AN X is closed in X.
Let ig(A) = n. Then there exists ¢ : A — S"~! odd and continuous (in E). Then
p=poe: AN X — S" ! isodd and continuous in X. Hence ix(ANX)<n. O

Lemma 2.3. Let ¥ : E — R be a locally Lipschitz continuous function. Then
U|x : X — R is also locally Lipschitz continuous in the topology of X.

Proof. Let ¢ > 0 be the embedding constant from X to E, i.e., ||u|| < ¢||u|x, for
any u € X. For u € X fixed, first there exist 6 > 0 and L > 0 such that for all
v € F with ||v — u]| < é we have |¥(v) — ¥(u)| < L||lv — ul|. Now, for all v € X

with [Jv — u||x < C_f_—l, we have |U(v) — ¥(u)| < L||jv — u|| < Le|lv — u||x. O

Next, we state a deformation lemma which will be used repeatedly.

Lemma 2.4. Assume ® € C?(E,R) satisfies (®) and the (PS) condition. Let
W C X be an admissible invariant set for ®. Assume K, NOW =0 for some c, so

that there is 6 > 0 such that, writing K! = K.N I/%/ and K2 = K. N (X \ W),
(K2 )as N (K2)as =0,

where (K)as = {u € E|dg(u, K!) < 46} for i = 1,2. Then there is eq > 0 such
that for any 0 < & < g9 and any compact subset A C (®°T° N X)UW, there exists
ne C([0,1] x X, X) such that

(i) n(t,u) =u fort =0 oru g ® ([c — 3¢, c+ 3e]) \ (K2)s;

(i) n(1, A\ (K2)a5) C ®°=5 UW, and n(1,A) C &~ UW if K2 = 0;

(iit) n(t,-) is a homeomorphism of X fort € [0,1];

(iv) ®(n(-,u)) is non-increasing for any u € X;

(v) n(t, W) C W for anyt € [0,1]; and

(vi) if @ is even, 1 is odd in u.

Proof. First, due to the (PS) condition and (c) of Definition 2.2, we can choose
g9 > 0 to satisfy the following conditions:

(2.2) K([c—3eg,c+320)) NOW =0, K([c— 3e0,c+ 320]) C (K:)s,

and

(2.3) % > %ﬂ Vu € &' ([c — 3eq, ¢+ 320]) \ (K.)s-

A =0"Y([e - 3eq,c+ 3e0]) \ (K2)s,

B=&([c—2e,c4+2e])\ (K?)2s
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and for u € E
. dp(u, E\ A)
V(W) = L B\ A) T dp (. B)
Then 1 (u) is locally Lipschitz on E, and by Lemma 2.3 also on X. Then
Vo (u)

flu) = =9(v) w5
L+ [[Vo(u)
defines a locally Lipschitz vector field both on £ and on X. Consider

{ dito(t,:b) = f(o),
o(0,z) =z € X.

Since ||f(z)|] < 1 for all z € X, the Cauchy problem has a unique solution o (¢, z)
continuous on R X X. Now for fixed 0 < ¢ < ¢y and a compact subset A C
(@< N X) UW, we claim that there is 7' > 0 such that 5(¢, z) = (7T, z) satisfies
all the properties of Lemma 2.4. We construct 5 in several steps as follows.

Step 1. For any z € (A\ (K2)35) N ® 1 ([c — 2¢,c+ 2e]) "W, by (2.2) and the fact

that T is an admissible invariant set we get o (¢, z) EI/%/ for t > 0. Thus by the
continuity of the flow in X there are T, > 0 and U,, a neighborhood of z in X,

such that o(7;,y) EI/(I)/' for all y € U,. Therefore, for all ¢ > T, and all y € U,
o(t,y) € W.

Step 2. Consider z € (A\ (K.)3s) \ W satisfying ®(z) > ¢ —2¢. Then ®(z) < c+e.
If o(t, z) remains in ®~1([c — 2¢, ¢ + 2¢]) for ¢ € [0, §], we have

5 5
lote.n) = ull < [ etruar < [ ar<a
Thus for all ¢ € [0, 6] we have o(t,z) ¢ (K.)2s and ¢(o(¢,2)) = 1. Then by (2.3)
5
B(o(8,2)) = ®(x) —1—/0 E@(O’(T, z))dr

o [N
st / T Ve (o(m )"

<c+e—3¢

=c— 2¢.
By continuity of the flow in X, there 1s a neighborhood U, of z such that for all
y €Uy and all t > T, := é we have ®(o(t,y)) < c—e.

Step 3. Consider z € AN ((Kl)ss \ W) with 2 € ®71([c — 2¢, ¢ + 2¢]). There are
two cases:

(a) there are t,, — oo such that dg(o(ty, z), K([c — 2¢, ¢ + 2¢])) — 0;

(b) infy>0dp(o(t, ), K([c— 2¢,c+ 2¢])) =46 > 0.

In case (a), if there are z, € K([c — 2¢, ¢+ 2¢]) and z, ¢ W such that
dE(O-(tn ) I‘), ZTL) - 01

and if o(¢, z) remains in ®~!([ec — 2¢, ¢ + 2¢]), then by (2.2) it has to travel for at
least & units of time outside (K,.)2s to go from (K!)ss to (K2)25s. Then the same
argument as in Step 2 gives the existence of T, and U,,. If there are z, € KNW such
that dg (o (tn, %), z,) — 0, by the fact that ¥ is an admissible invariant set and that
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K ([e— 2¢, ¢+ 2¢]) is compact, we see that, along a subsequence, o(ty, z) converges
in X to a point z € K([e — 2¢, ¢+ 2¢]). Since z € I/(I)/', for n large, o(t,,z) € I/%/
Then by the continuity of the flow in X, there are 7T, > 0 and U, a neighborhood
of z in X, such that for all y € U, and all t > Ty we have o(t,y) € W.

Finally, for case (b), if o(t,z) reaches (KZ2)2s before entering ®°~%°, then the
same argument as in Step 2 gives T, > 0 and U, such that o(t,y) € ®°~2 for
t > T, and y € U,. Assume that o(t, z) stays outside of (K2)zs. First, by the (PS)
condition there is ¢’ > 0 such that

Vel
L+ [[Ve(y)|

Then if (¢, z) remains in ®~!([c — 2¢, ¢+ 2¢]) for ¢ € [0, g—f], we have ¢(o(t,z)) =1
and

>e, Yyed Y [e— 2, e+ 2)) \ (K([c — 2¢, ¢ + 2¢]))s.

3 Fd 3

@(0(§,x)) = &(z) +/0 —®(o(r,2))dr < cte - E_fg' = c— 2.
Again, there are T, > 0 and U,, a neighborhood of z in X, such that for all ¢ > T}
and y € U, we have ®(c(Ty,y)) < c—e.

Note that (K2)3s N X is open in X. Then (A\ (K2)3s) N ®7([c — 2¢, ¢ + 2¢]) is
compact in X, and can be covered by finitely many Uy, , say, for i = 1, ..., k. Define
T =max{Ty,, ..., Ty} and, for ({,z) € R x X,

n(t,z) = o(tT,z).
We claim 7 satisfies all the properties of Lemma 2.4. (i), (iii), (iv), (v) and (vi) are
obvious. From the above steps, we have (1, AN ®~!([c — 2¢, ¢+ 2¢]) \ (K?)35) C
®°~*UW. For z € A\(K?)35 with ®(z) > c+2¢, we have z € W; thus n(1,z) € W.
For z € A\ (K2%)35 with ®(z) < ¢ — 2¢, by (iv), n(1,2) € ®~2¢. Thus (ii) is
proved. O
Remark 2.1. (1) Tt is easy to check that the union and intersection of a finite

number of admissible invariant sets for ® is still an admissible invariant set for ®.
(2) From the proof, we see ¢¢ is given by (2.2) and (2.3).

Proof of Theorem 2.1. We prove (i), and mention necessary changes for (ii). Since
infp(®) < infg(®) < 0, we may perform the usual minimization argument. Let
un € P be such that ®(u,) — infp ®. Using the flow o if necessary, we may assume
®'(u,) — 0. By the (PS) condition, u, converges to a critical point w in E. But P

is closed in £ and K. NJP = 0 for ¢ < 0, and so we get u € Pg, which gives a pair

[o] [o]
of critical points in P U — P.
Now for m > 1 define

Ym = {A CZx| Ais compact, ix(A4) > m},
and for m > 2 define

= Inf )
Cm Alenzmil;g (z),

where S = X \ (PU(—P)). By Lemma 2.1,
—0< < -<ep <0,
We claim that, for m = 2, ..., n,

(2.4) K., NS#0,
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and K. NS isclosed in X and E. We also claim that if, for some m > 1 and k£ > 2
with m + k < mn,
C'=Cm41 = Cm42 = *** = Cm+k,
then
(2.5) in(K.NS) > k.

To prove (2.4), we assume K. NS = § for contradiction. Take W = PU—P in
Lemma 2.4. Then K. N (X\ [/(I)/') =0,ie, K} =0. Then there is &g > 0 such
that when we take A € X, such that sup 445 ®(2) < c+¢, with £ < g, there exists
n € C([0,1] x X, X) satisfying (i) — (vi) of Lemma 2.4. Take A = (1, A). Then by
(iii) of Proposition 2.1, A € ¥,,,. By (ii) of Lemma 2.4,

Aco uw.
Then
sup (z) <c—e¢,
Ans
a contradiction.

To prove (2.5), we use Lemma 2.4 again. By the proof of Lemma 2.4, K! =
K. N I/(I)/' and K2 = K. NS are both compact in E. By Proposition 2.1, there is
a closed neighborhood N in EF with K2 C N C N such that ig(N) = ig(K2).
Without loss of generality, we may assume N = (K2)3s in the F-norm, with 6
satisfying (K2)as N (K!)as = 0 as in Lemma 2.4. By Lemma 2.2,

ix(NNX) <ig(N)=ig(K?).
For the § > 0 given, by Lemma 2.4 there exists €y > 0 such that when we take A €
Ytk satisfying sup 45 ®(2) < ¢+ ¢ with € < eg, there exists n € C([0, 1] x X, X)
satisfying (i)—(vi) of Lemma 2.4. Then, by (ii) of Lemma 2.4,

n(1, A\ (K2)as) C O UW.

Then we have
ix (1(01, A\ (K2)as) < m,
for otherwise ix (n(1, A\ (K2)3s)) > m + 1 and
¢ =cmp1 < sup P(z) < sup P(z) < sup ®(z) <c—e¢,

n(1,A\(K2)a5)nS (@e—=UW)NS po-e
a contradiction. Now by (i),(ii) and (iii) of Proposition 2.1, and (iii) of Lemma 2.4,

we have

m+k <ix(A) <ix(A\ (N NX)) +ix(NNX)

<ix(n(1, A\ (K2)ss) +ip(N) < m+ip(K7),
which gives ip(K.NS) > k.
For case (ii), where infg ®(z) < infp ®(z), we may also define

= inf O(x).
c1 AlgElilrqu; (z)

Then infg ®(z) < infp ®(z) implies ¢; < infp ®(z) and ¢; < 0. If we take € > 0
so that ¢; + & < min{infp ®(z), 0}, we can follow the same argument as above to
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show ¢y is a critical value and K, NS # 0. Also, if ¢y = ¢c3 = - -+ = ¢, then we
can show similarly that ig (K., NS) > k. We omit the details here. O

Our argument can be used to obtain the following more general version of Clark’s
Theorem. We omit the proof here.

Theorem 2.2. Let ® € C?(E,R), and let (®) hold. Assume @ is even, ®(0) = 0,
and ® satisfies the (PS) condition. Assume that P is an admissible invariant
set for ®, and K. NIP = § for all ¢ < 0. Suppose there exist linear subspaces
FCXand HC E withdimF = n, codim H = k > 1, such that for some p > 0,
SupFﬂaBP(O)q)(I) < 0, and let infy ®(z) > —co. Then @ has at least (n — k) pairs
of critical points in X \ (P U —P) with negative critical values.

A dual version of this is the following.

Theorem 2.3. Let ® € C*(E,R) and let (®) hold. Assume ® is even, ®(0) = 0,
and ® satisfies the (PS) condition. Assume that P is an admissible invariant
set for ®, and K.NAOP = 0 for all c > 0. Suppose there exist linear subspaces
FCX and HC E withdimF = n, codim H = k, such that for some p >r > 0,
infrnap, o) ®(x) > 0 and supFnaBP(O)CI)(:E) < 0. Then, ifk > 1 (k=0 resp.), ®
has at least (n — k) ((n— 1) resp.) pairs of critical points in X \ (P U —P) with
positive critical values.

Let us give another result, which is closer to the spirit of Ljusternik-Schnirelman
theory, aiming at applications to nonlinear eigenvalue problems. Let B, = {u €
E|||u|| = r} with r > 0.

Theorem 2.4. Let ® € C*(E,R). Let ® be even. Suppose r > 0, ®|sp, satisfies
(PS), K(®lop,) C X N OB, and ®|sp, is bounded from below. Let PNIB, C X
be an admissible invariant set for ®|sp,. Assume K(®|sp,)NOP = 0. Then ®|sp,
has infinitely many distinct pairs of critical points in (0B, N X)\ (PU—P).

Proof. We sketch the proof here. That ®|sp, possesses infinitely many pairs of

critical points follows from, e.g. to [44]. The question is whether they belong to P

and —P. We need a procedure similar to the one we used earlier to rule this out.
Let ¥x = {A C X N 9B, |A compact, A = —A} and

S = {4 € Sxlix(A4) > m},

em = inf sup ®(z), with S =X\ (PU-P).
A€%,, AnS

Then we may follow the idea of the proof of Theorem 2.1 to show that for m > 2,
K., N(0B, \ (PU-P)) #0,

and if ¢y = emy1 = -+ - = Cmgk for some m > 2,k > 2, then there are infinitely
many pairs of critical points in K. N (9B, \ (P U —P)). We leave the details to
interested readers. O

Remark 2.2. Obviously, our theory can be set up for C?~° functionals without any
changes, since V®(u) is locally Lipschitz continuous. For C! functionals, one may
try to approximate them by C? functionals. We shall give an example for which
the variational functional cannot be C?, and an approximation procedure has to be
used. (See Theorem 4.6.)
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Remark 2.3. Obviously, our results can be generalized to G-invariant functionals
for more general G-group actions, for example, G = Sl,Zp. Instead of the notion
of genus, one can use the S'-index theory, Z,-index theory, etc. (e.g., [30], [46]).
We leave the statements of the results to the readers.

Remark 2.4. In all the theorems above, the positive and negative cones P U (—P)
can be changed to a symmetric admissible invariant set W such that for any A with

ix (A) € [2,00) we have AN (X \ W) # 0. Then all theorems 2.1 - 2.4 are still valid.

Remark 2.5. In all the theorems above, we have used the negative gradient flow.
Checking the proofs, one can replace this flow by any flow with similar properties
in Lemma 2.4.

Remark 2.6. Another result of constructing critical points for even functionals will
be given at the end of Section 3, which is related to linking type theorems.

3. LINKING THEOREMS IN PARTIALLY ORDERED SPACES

Generalizing the Mountain Pass Theorem, many people have used minimax the-
ory to prove linking type theorems (e.g., [11], [17], [44], and references therein). In
[39], we have proved a Mountain Pass Theorem with the order structure built in,
giving the location of the mountain pass critical point with respect to the structure
of some invariant subsets under the flow. Following the idea of [39], we continue our
study in this direction, namely, proving minimax theorems in the presence of some
invariant subsets and giving the location of the critical point produced in relation
to the invariant subsets. We shall prove a linking theorem in a very general context
which gives the location of the critical point produced by the linking structure with
respect to some invariant subsets.

Let us recall that (@, T) is a linking (here @ C E is a closed subset with boundary
dQ and T C E is closed) if (i) 0QNT = 0, and (ii) for any y € C(Q, E), 7]|aq = id,
we have y(Q) N'T # 0. (See, e.g., [11], [18], [44] for more general versions.)

A typical linking type theorem is as follows, e.g., [18], [44].

Theorem B. Let ® € C'(E,R) and let (Q,T) be a linking. There exist 3 > a
such that

sup ®(z) < oo and sup®(z) < a < f < inf P(z).
Q oQ T
If (PS), holds for
¢ = inf sup ®(z),
7€ y(Q)

where
['={y € C(Q, E)lvloq = id},
then ¢ 1s a critical value of ®.
The main result of this section is the following.

Theorem 3.1. Let ® € C?*(E,R) satisfy (®). Let W C X be an admissible in-
variant set for ®. Let (Q,T) be a linking such that T C E\W, Q C X is compact,
and for any v € T = {y € C(Q,X)|ylagns = id,y(0Q N W) C W} we have
Y(Q)NS #B, where S = X \ W. Assume that there ezists f§ > « such that

(3.1) sup ®(z) < a < f < infd(z)
aQns T



3216 SHUJIE LI AND ZHI-QIANG WANG

and supgp ®(x) < co. Let

c= inf sup ®(x).
ve€ly(Q)ns )

Then ¢ > 3, and if K.NOW =0, then K.NS # 0.

Proof. First we show that oo > ¢ > f. supg ®(z) < oo implies ¢ < co. So it suffices
to show that, for any v € T,

Y Q)NTNS #D.

This is true because v(Q) NT # @ and 7(Q) C X imply y(Q)NT N X # . But
TNXCS. Weget y(Q)NTNS#P. Thus

sup ®(z)> sup P(z) > inf P(z) > 7.

y(Q)NS ¥(Q)NTNS T y(@Q)nT

Next, we show that if K, NOW = @, then K. NS # 0. If K.NS = (§, we produce
a contradiction as follows. Now, we take ¢ > 0 so that ¢ — 2¢ > «, and take v € T
such that sup,(gyns < ¢+¢. By Lemma 2.4, for this ¢ and A = (Q), there exists
n € C([0,1] x X, X) satisfying (i)—(vi), which in particular imply
n(1,7(Q)) C @ UW.
Consider y; = n(1,7(+)). Then for z € (0Q) N W we have 71 (z
e

since y(z) € W and n(1,W) C W. For z € (9Q) N S, sinc
n(1,v(z)) = n(1,z) = z. Hence y; € T. But

sup @(z) < sup ® < sup P(z) < c—ce,

Y1 (Q)NS (@e—=uUW)NS Pe—e

;7(1,7(515)) ew,

< a, we have

) =
D(x

a contradiction. O

Remark 3.1. In case 0Q C W, (3.1) does not make sense. However, in this case,
we can still define

c=inf sup &(x),
’YEFry(Q)nS ()

where

I'={ye (@ X)(0Q) Cc W}
By the same proof, we can show if ¢ is finite, then K. N.S # 0.

[o]
Example 3.1. With the positive cone P in X and its interior P, we may define a

partial order relation: u,v € X, u >vou—ve P\{0h,u>vou—veE P. An
order interval with interior [u, v] for © < v is defined as [u,v] = {w € X|u < w < v}.
Then we have the following corollary.

Corollary 3.1. Let ® € C?(E, R) satisfy (®) and the (PS) condition. Let Wy, Wa,
and W be three admissible invariant sets for ® such that Wy C W, Wy C W,
WiN Wy =0. Define

c¢1 = inf sup ®(z),
Y€l y(nns (=)

where
I'={y e C(I,W)|y(0) € Wi,7(1) € W2}

and I =[0,1], S = W\ (WL UWa,). If ¢ is well-defined and K.N(3(W1 UW3)) = 0,
then K. NS # 0. Furthermore, if K, NS are isolated, there exists xg € K, NS
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such that zo is a mountain-pass point, and C1(®,zq) # 0. Here Cy(P, zo) are the
critical groups of ® at zq (cf. [17]).

Using Remark 3.1, we may deduce this from Theorem 3.1. This corollary is
a slightly more general version of the Mountain Pass Theorem in order intervals
in [39], where we considered a more concrete situation. The proof in [39] uses a
different idea.

Example 3.2. Let us consider another example which has been used in studying
nonlinear elliptic problems with superlinear nonlinearity. Let E = E; @ E{ with
dimE; > 1. Let y € Eif with ||y|| = 1, and for R > 0 define Q = {e = e; +
ty € E | ex € Fy,|lea]] € R,0 <t < R/|le|]]| £ R}. For 0 < r < R, define
T = {e € E{ | ||e]| = r}. Then it is well known that (@, T) is a linking (e.g., [17],
[44]).

Corollary 3.2. Let ® € C%(E,R) satisfy (®) and (PS). Assume W = PU(—P) is
an admissible invariant set for ®. Assume, as in Example 3.2, that (Q,T) is given
satisfying @ C X and PU(—P) C E\ (Ei \ {0}). Assume that, for some a < j3,

max ® < a < g <infd.
aQNs T

IfK.NOW =0, then K.NS #£0, where

e =1inf max ®(u),
vely(Q)ns

and
I'={y€eC(Q X)|7lagns = Id,4(0Q N W) C W}.

When the functional is even, the conditions can be weakened. In fact, we have
the following result.

Corollary 3.3. Let ® € C?(E,R) satisfy (®) and (PS). Assume ® is even and
W = P U (=P) is an admissible invariant set for ®. Assume, as in Ezxample
3.2, that (Q,T) is given satisfying @ C X and PU (—P) C E\ (E{ \ {0}). Let
Q1 ={u€eQ|||lu|| = R}. Assume that, for some a < 3,

max® < a < g <inf®.
Q1 T

IfK.NOW =0, then K.NS #£0, where

e=1inf max ®(u),
veT v(Q)nS

and
['={yeC(Q,X)|7lq. = Id, v|BrnE, is odd}.

Proof. By the argument of [38], for any v € T, v(Q) N T # 0. Also, we know
TNX CS;s079@Q) NS # 0. Then arguments similar to the above show that
K. NS # 0. We leave the details to the readers. (]

Finally, we give a version of the symmetric Mountain Pass Theorem ([44]).

Theorem 3.2. Assume ® € C?(E,R) is even, ®(0) = 0, and ® satisfies (PS). for
¢ > 0. Assume that P is an admissible invariant set for ®, and K. NOP = § for all
c¢>0. Assume E = @;’;1 E;, where the Ej; are finite dimensional subspaces of X,

and for each k, let Yy, = @;ﬂ:l E; and Zy = @;‘;k E;. Assume that for each k there
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exist py > > 0 such that limy_, cay, < oo, where aj, = maxy,naB,, (0) d(z), by :=
infz,nam,, (0) ®(z) — 0o as k — oco. Then ®(z) has a sequence of critical points
u, € X\ (PU(—P)) such that ®(u,) — co as n — oo, provided Z;NIB,, (0)NP =10
for large k.

Proof. Let

cp = inf sup  P(u),
Y€K u€y(Bi)NS
where By, = {u € Y3 | ||u]| < pr} and Ty, = {h € C(By,X) | his odd, and h(u) =
wif [ull = pi}.

We claim that for any v € Ty, 7(Bgx) N.SN (2 NIB,,) # 0. By an application
of the Borsuk-Ulam theorem, one easily sees that v(Bg) N (Zx N 9B, ) # 0. Since
(ZyNIB,, )N P =0, we have proved the claim. Then this shows that ¢; > by — oo
as k — oo.

To show K., NS # 0, we follow the same argument as in the proof of Theorem
2.1. If K., NS = 0, there exists g > 0 such that ¢y — 3¢ > a;. When we take
0 <& <eo and h € ['y such that sup,p, )\ s ®(u) < cx +¢, by Lemma 2.4 there is
amap n(t,u) € C([0,1] x X, X) such that (1, h(Bg)) C @~ U (P U (—P)). Then
v1(u) = n(1,7(u)) € T, since 5 is odd in u and n(t,u) = u for u € ®°*~3. But,
supy(p, s P(u) < ex — € < cx, a contradiction. O

4. APPLICATIONS

As applications of our abstract theory, we consider the Dirichlet boundary value
problem

—Av = f(z,u), inQ,
(4.1) { u = 0, on 0%,

where Q C R" is a smooth bounded domain. We mainly want to demonstrate the
types of results we may obtain by using our theory; so we shall not seek for optimal
conditions placed on f(z,u), although we may mention necessary changes in the
proofs which provide more general results. Sign-changing solutions have attracted
much attention in recent years; see [8], [9], [10], [12], [13], [14], [18], [19], [24],
[25], [26], [27], [28], [40], [45], for various types of problems and [20], [29], [41] for
numerical methods for sign-changing solutions.

We make the following assumption:

(f1). F€CYHQ x R) and there are C > 0 and 2 < o < 2* = 2 (for N = 1,2,
we take 2* = oco) such that

of

a—u(l‘,u) <O+ u|*7?), VY(z,u) € 2x R.

Under (f1) classical solutions of (4.1) are in one-to-one correspondence with
critical points of the following C?-functional on E = H}(Q):

1
<I>(u):§/Q|Vu|2d:v—/ﬂF(:ﬂ,u)dr, u€ kb,

where F(z,u) = fou flz,m)dr.
On E| let us define

Prp={u€ E|u(z)>0, ae. in Q},
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which is a closed convex cone. Let X = C}(Q). Then X is a Banach space and
embedded densely in E. Let

P=PrNnX.
Then P is a closed convex cone in X. Furthermore, P :1% UA P under the topology
of X, i.e., there exist interior points in P. As we did in Section 3, we may define a

partial order relation: u,v € X, u>v <= u—v € P\{0};u>v < u—v Eﬁ.

Proposition 4.1. Under (f1), (®) is satisfied.

Proof. By the elliptic theory, K(®) C C2'*(Q) C X. A direct computation gives
Vo(u) =u— (—A)_lf(l‘, u) = u— Gg(u),

where Gg : E — E is C! and compact. Gg(X) C X and G = Gg|x : X — X is
of class C1, and @ is strongly order preserving in the sense that u > v = G(u) >
G(v). O

(f2). 3C > 0 such that
fle,t) — f(z,5)
t—s

Proposition 4.2. Under (f1) and (f2), if ® satisfies the (PS) condition on E,
then W = P s an admussible invariant set for @.

>—C, Ve € Q,t>s.

Proof. Using the constant C' from (f2), we may rewrite (4.1) as

—Au+ (C+ 1Nu=(CH+ Nu+ f(z,u), in€Q,
u =0, on 0%

Using the equivalent norm ||u||* = [, |[Vu|* + (C + 1)u?, we see that
Vo (u) = u—Gg(u),
where
Gp(u) = (~A+C+ 1) ((C+ Du+ f(z,u)) = (~A+C+ 1) f(z, ),
in which f(z,u) = (C'+ 1)u+ f(z,u) and thus f(m;t) —~f(x, s) > (t—s) fort > s.

By the strong maximum principle, the restriction G of Gg on X, is strongly order
preserving. Thus P and —P are invariant sets of the negative gradient flow of
®. The requirement (a) is satisfied automatically. For (d), we note that for all

v € P\ {0}, the vector field —V® points at v inside the cone ;’, and we have

v — Vo) € P,

which follows from v — V®(v) = G(v) > 0. To prove (b), let u, = o(t,,v) for some
v € X\ (PU(=P)) and let t, — oo be a sequence such that u, — u in E for some
u € K(®). Let {(u) = lew in (2.1). Note that

t
o(t,v) = e 0y 4 e_g(t’“)/ ee(s’U)G(a(s, v))é(o(s,v))ds,
0
where 6(t,v) = fotﬁ'(a(s, v))ds.

Let Xo = W24(Q) for some ¢ > 2 such that the embedding from X; into
X = CH(Q) is compact.
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It is well known that there exists a finite sequence of Banach spaces X1, ..., X;n
such that

Xo—=X1 = - —=Xn=F,

the embeddings from Xj_; into Xj are continuous, é(Xk) C Xp_1, and G ¢
C(Xy, Xr—1) maps bounded sets to bounded sets. This is related to the notion of
X-regularity as used in [33] and [15], and similar ideas were used also in [8], [9],
[10], [16], [26].

By the (PS) condition,

sup||e(t,v)||g = Bm < 0.
>0
We need to show that the set

{B—Wﬂ))/ot G (0 (s,v))E (o (s, v))ds | tzO}

is compact in X . It suffices to show this set is bounded in Xy, since the embedding
from Xg into X is compact. This is done by induction. First,

le=8C) [ C0)G o (s, v))E(a (s, v))ds||x,. -1
< e [ 80 (o (s, v))]|Go (s, v)) || x,_, ds
S Bm—17

for some B;,—1 > 0. By induction, we have

1
[Je=?(0) / G o (s, v))E( (5, v))dsl [ x, < Bo.
0

The proof of (b) is complete. For (c), if u, € K(®)N(PU(—P)) and u, — uin E,
then u, is bounded in E. By condition (f1), the elliptic theory, and the bootstrap
argument, we get that u, is bounded in W%¢(Q) for some ¢ large such that the
embedding from W%?(Q) into X is compact and thus u,, — u in X. O

Let Ay < A3 < A3 < -+ be the eigenvalues of (—A) in Q with the Dirichlet
condition, and denote this set by o(—A). We make more assumptions:

(f3)- EM_,OO@ < A1 uniformly in z € Q;

(fa)- li_mltléof(j’t) > Ay uniformly in z € Q for some k > 2;

(f5). f(z,u) is odd in u.

Theorem 4.1 (Sublinear nonlinearity). Under (fi23.4), equation (4.1) has at
least one pair of one-sign solutions uqy > 0, —u; < 0, and at least (n — 1) pairs of

sign-changing solutions tu;, fori=2,...,n. Here n = Ele dimKer(—A — ;).

Proof. 1t is easy to see that ® € C?, and by Proposition 4.1 (®) holds. Also ® is
even, ®(0) = 0, bounded from below by (f3). P is an admissible invariant set for ®.
(f4) implies that when we take F' = @le Ker(—A—X;), we get suppap, ®(z) <0
for 0 < p small. By Theorem 2.1, the result follows. O

Remark 4.1. Equation (4.1) was studied for example in [18], [33], [44], and recently
for sign-changing solutions in [17], [25]. Condition (f2) may be removed using a
C! modification of f which satisfies (f2) (see [33] for details). In [27] two pairs of
sign-changing solutions are obtained under conditions similar to those of Theorem
4.1.
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Next we consider a Landesman-Lazer type result.

A A
(f6). f(z,u) =X u+ p(z,u) with A€ a(—A).
(f7). There is M > 0 such that

f(z,u)— X u| < M, V(z,u) € Q x R.

(fs). [o(F(x,¢) — 3¢”)dx — —o0 as [|¢]| — oo for ¢ € Ker(—A— 3.
(fs). There is r > 0 such that

A

F(z,u)— %uz >0, Y(z,u) € Qx (0,7].

Theorem 4.2 (Asymptotically linear case with resonance). Under (fi25,673859),

)

A

equation ({.1) has at least n pairs of sign-changing solutions provided X\ # A1,
A

where n = dimKer(—A— )).

Proof. For this problem, we use Theorem 2.3. Let 3 = A for some k& > 1. Let
= @le Ker(—A — X)), H = @;2; Ker(—A — X;). Then dimF — codimH =
dimKer(—A — ). We can show similarly that suppnsp, ®(z) < 0 for p > 0 small,
and by (f7r—g), infg ®(z) > —oo. Then the result follows from Theorem 2.3. O

Remark 4.2. There are many papers in the literature related to the Landesman-
Lazer type problems. We just refer to [18] and [44] for references.

Next, we consider an asymptotically linear problem.

(f10). limyy—oo f/(x,t) € [Ax + €, Apy1 — €], for some € > 0.

(f11). limyy—o f'(2,1) € [\ + €, g1 — €] for some € > 0.
Theorem 4.3 (Asymptotically linear case without resonance). Under conditions
(f12,5,1011), equation (4.1) has at least n ((n — 1), resp.) pairs of sign-changing
solutions provided Ay > Aiy1 or A\ > Apy1 with min{k, I} > 1 (min{k, I} = 0,
resp.). Here

k
n= Y dimKer(=A=X;), if\> g
i=I+1
and

1
n= Y dimKer(—A—X), X\ > 1.
i=k+1
Using Theorem 2.2 or 2.3, the proof is similar to the proof of Theorem 4.2, and
we omit it here.

Remark 4.3. Without the condition of f being odd, for sign-changing solutions this
problem has been studied for example in [10], [9], [13], [27], [39]; see the references
therein too.

Next, we consider a nonlinear eigenvalue problem: for r > 0 fixed,
—Au = Af(z,u), inQ,
(4.2) u=0 on 09,
Jo IVul?de = r2.
We want to find solutions of the form (A, u) € R x X.
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(f12). f(z, )t > 0 for (z,t) €e A x Rif t # 0.

Theorem 4.4 (Nonlinear eigenvalue problem). Under (f1,2512), (4.2) has infin-
itely many sign-changing solutions.

Proof. We follow the original idea for the setting up of the problem in [44]. Consider
D(u) = —/ F(z,u)dz, u€ F;
Q

then ® € C?(E, R) and is even. Let r > 0 be fixed. At a critical point u of ®|s5,,
where B, = {u € F | ||u|| < r}, we have

&' (u)v — p(u,v) =0 = —/ flz, u)vde — /1/ Vu - Vvdz
Q Q
for all v € E. Choosing v = u and using (f12), we get

= @/(g)u _ - /g f(l; u)udz “0

r
Therefore u is a solution of (4.2) with A = —u~!. This leads us to use Theorem 2.4
for ®|sp, to get solutions of (4.2). Tt is proved in [44] that ®|sp, satisfies (P.S),
for all ¢ < 0. By the maximum principle, K(®|sp,) NIP = 0 for r > 0. It is left
to show that P N @B, is an admissible invariant set for ®|sp, . Since P is a closed
convex cone, (a) of definition 2.2 is satisfied. Let ® = ®|5p,. Then

(VO (u), u)u

[ |?

r

Vo (u) = VO(u) —

Note that —V®(u) = (=A)~ f(z,u) == Gg(u) : E < E ,and G:=Gglx : X < X
is strongly order preserving. For u € PN JB, we have
~ Vo&(u),
u—sVP(u)=u(l + w) +sG(u) > u
r
for s > 0 small. This gives that the flow given by —V%(u) on X N JB, leaves P
invariant, and in fact property (d) is satisfied.

To prove (b) we use the notation in the proof of Proposition 4.2 and consider
(2.1): o'(t,v) = =€(o(t,v))VP(o(t,v)). We note that we only need to consider a
compact orbit (in F) of the negative gradient flow in ®¢ for some ¢ < 0, because
all critical values we obtain will be negative ones. Define

a(u) := —W = /ﬂf(m,u)udm.

Then if o(t,v) C ®° for some ¢ < 0, using the compact embedding from E into
L*(Q) for a < 2%, we get a(o(t,v)) > ag > 0 for all t > 0. Since —Vé(u) =
—a(u)u + G(u), we get o'(t,v) = =&(o(t,v))a(o(t, v))o(t,v) + E(o(t, v))G(a(t,v)).
Then we may follow essentially the same argument as in the proof of Proposition
4.2 to show that the orbit is compact in X. (c) can be proved by an argument
similar to the one in the proof of Proposition 4.2. O

Remark 4.4. We refer the reader to the classical treatment of nonlinear eigenvalue
problems in [35], [44], and recent work on sign-changing solutions in [37].

We consider a superlinear problem next. Assume
(f13). There is g > 2 such that pF(u) < f(u)u for |u| large.
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Theorem 4.5 (Superlinear nonlinearity). Under (fi2513), (4.1) has infinitely
many sign-changing solutions.

Proof. Let F; = ker(—A — X;), YV}, = @le E;, and Zy = @2, Ei. Then it is
easy to check that for all & with Ay > fy(z,0) there are pr > 7, > 0 such that
Squmek(O)(I)(“) < ap := 0 and b := iﬂfzknaBrk(o)q)(U) > 0 and by — oo.
Thus Yy C X for any k > 1. Moreover, for k > 2, Z, N P = {0}. This can
be seen by noting that for all u € P\ {0}, [, u¢1(z)dz > 0, while for u € Zj,
fﬂ udy(z)de = 0, where ¢ is the first eigenfunction of the Laplacian operator on
Q. Applying Theorem 3.2, we get K., \ (P U (—P)) # 0 for all large k, where ¢y, is
defined in the proof of Theorem 3.2. O

Remark 4.5. The existence of infinitely many sign-changing solutions for this prob-
lem was also given recently in [8], in which a different method was used. Our method
here is more intuitive and constructive, along the line of the classical treatment in

[6].

Next, we give an example in which the functional ® cannot be C? and approxima-
tions by C? functionals can be done to use our theory to get multiple sign-changing
solutions. The problem is

. —Au = Mu|""?u+ f(u), inQ,
(4.3) { u = 0, on 0%,

where A > 0 is a real number, 1 < ¢ < 2. Note that f(u) = Alu|?"2u+ f(u) € C?~1
in u. So @ is in C1(E,R).
Then under (f1) and (f2), we have

V& (u) = u— Gg(u),
where Gg(u) = (—A)_1~(u) :F — Eisonly C° and G := Gg|x : X — X is also

only C% G(X) C X follows because if u € C}(Q), then f(z,u) € C¥(Q), where
a=g¢—1and G(u) € CH*(Q).

Theorem 4.6 (Concave nonlinearity near zero). Under (f1,2,35), for every A > 0,
(4.3) has a pair of positive and negative solutions uy and u_ = —uy, and has
infinitely many sign-changing solutions.

Proof. Let us fix k, an integer, and « + f'(0) > Mg, the k-th engenvalue of —A.

Consider gp(u) = au for |u| < h and gp(u) = Au|?"2u for |u] > 2h, with a
smooth connection for A < |u| < 2h, so that gx(u) — Au|?"2?u as h — 0 in the
continuous norm. We may assume g5 < gp if h > h’. Then we can consider
the corresponding equation with A|u|?=2?u+ f(u) replaced by gn(u)+ f(u), and the
corresponding functional ®p,(u) isin C%(E, R). Tt is easy to check that forallu € E,
0 < ®p(u) —®(u) < Ch?H! and ||[V®p(u) — V@®(u)|| < Ch?, where C' depends only
on Q and A. Applying Theorem 2.1 to @y, we get ca(h) < c3(h) < ... < ck(h) < 0,
which give (k — 1) pairs of sign-changing solutions for the modified equations.

For ® we may also define ¢3 < c3 < ... < ¢p, as for ¢;(h), i = 2,3, ..., k. Then it is
not difficult to show for i = 2,3, ..., k we have ¢;(h) > ¢; and ¢;(h) — ¢; as h — 0.
Using the fact that for A small all critical points of ®; are uniformly bounded in F,
we can show that K. (®) NS # 0. In fact, let up € K, (5)(®s) and up, € S. Using
the elliptic theory, we get up — w in F and in X such that u is a solution (4.3),.
Since there is no solution belonging to (P U (—P)), we get u € S and ®(u) = ¢;.
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Thus, if the ¢;’s are all different, we get at least (k — 1) sign-changing solutions for
(4.3).

Let us assume ¢ := ¢;41 = -+ = ¢j41 for some [ > 1. Let & > 0 be such
that distg(K!(®), KZ(®)) > 86 > 0, ig((K2(®))as) = ig(K2(®)) and for all j =
i+ 1,...,¢+ 1 and h small, (Kfj(h)(éh)):w C (KZ2(®))as. By the convergence of @,
to @, there is g > 0 such that we can make (2.2) and (2.3) hold uniformly for all
@), with h small, and all ¢;(h) with j =i+ 1,...,i4+ . Note that ¢y in Lemma 2.4 is
determined by (2.2) and (2.3). Thus we may use Lemma 2.4 for all ®;, with h small
and all ¢; (h) with j =i+ 1,...,i4+ 1. Take A € ¥;4; such that sup 5 ®(u) < c+ 5
with ¢ = 52. Then for h small, sup 45 ®4(u) < c;q1(h)+e. Then, applying Lemma
2.4 to @y, there is n € C([0, 1] x X, X) such that

(1, AN (K2, ) (®4))as) € 57 U (PU(-P)).

We may assume c;41(h) — e < ¢ — 5, since as h — 0, ¢;41(h) — ¢. Then we have

ix (1, AN (K2 n)(®n))35)) < i,

for if not we get ¢;y1(h) < ciyi(h) —e < ¢ — 5 < ¢ = ciy1, which is a contradiction
with ¢;41(h) > ¢;y1. Finally, let N = (Kc2 (h))gg; we have

i+1<ix(A) <ix(A\ (N NX))+ix(NNX)

<ix (n(1, AN\ (K2 n))as) + i (N) < i4ip((K2(®))as) =i+ in(K?),

which gives ig(K.NS) > L.
This proves that ® has at least (k — 1) pairs of sign-changing solutions. Since &
is arbitrary, the proof is complete. O

Remark 4.6. Using the method of [48], we may only need that (f;) is satisfied for
[t] small in a neighborhood of ¢ = 0. We leave the statement to interested readers.
The radial case was considered in [5]. Results for this type of problems under global
conditions on f were given in [4], [6], [31], and for sign-changing solutions in [39].

Finally, we consider a problem with a parameter which may have more and more
solutions as the parameter changes:

—Au = Af(u), inQ,
(4.4)x { u = 0, on 09,

where A > 0 is a real number. We make one more assumption.
(f14). f(u) = o(|u|) for u small, and there is r > 0 such that f(u) > 0 for
u € (0,r) and f(r) = 0.

Theorem 4.7. Under (fi514), for every integer k there is A > 0 such that for
A > g, (4.4)5 has at least 2(k — 1) pairs of sign-changing solutions, (k—1) pairs of
which have positive critical values and (k — 1) pairs of which have negative critical
values. In addition, there is X > 0 such that for all X > X, (4.4)x has two positive
(and two negative) solutions, with one having positive critical value and the other
having negative critical value.

Proof. First we truncate f to 0 for |u| > r. Then f is Lipschitz continuous and the
corresponding functional ® is C?~%. Note that (f2) is satisfied for the truncated f
by (f1) and (f14). We shall use Theorem 2.1 to get (k — 1) pairs of sign-changing
solutions having negative critical values, and Theorem 2.3 to get (k — 1) pairs of
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sign-changing solutions having positive critical values. Let k be fixed, and choose
Am such that dim F' > k when we write F = @, Ker(—A — X;). Take p > 0
so small that fQF(U)dCE > 0 for all v € 0B,(0) N F. Then there is Ap > 0 such
that for all A > Ay we have Supsp,(0)nr ®(u) < 0. Thus by Theorem 2,1 we obtain
(k — 1) pairs of sign-changing solutions having negative critical values. Since 0 is a
local minimum of ®, by Theorem 2.2 we also obtain (k — 1) pairs of sign-changing
solutions having positive critical values. The existence of two positive solutions
follows from the usual arguments by cutting off the negative part of f(u) and using
minimization to get the positive solution having negative critical value and using
the Mountain Pass Theorem to get the positive solution having positive critical
value. (]

Remark 4.7. This problem was treated in [6] and [44] without information about
sign-changing solutions.
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