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Abstract. For a class of quasilinear Schrödinger equations we establish the
existence of ground states of soliton type solutions by a minimization argu-
ment.

1. Introduction

This paper is concerned with the existence of standing wave solutions for quasi-
linear Schrödinger equations of the form

i∂tz = −∆z +W (x)z − f(|z|2)z − κ∆h(|z|2)h′(|z|2)z(1)

where W (x), x ∈ RN , is a given potential, κ is a real constant and f, h are real
functions of essentially pure power forms. The semilinear case corresponding to
κ = 0 has been studied extensively in recent years (e.g., [3], [9], [24]). Quasilinear
equations of form (1) appear more naturally in mathematical physics and have been
derived as models of several physical phenomena corresponding to various types of
h, the superfluid film equation in plasma physics by Kurihara in [13] (cf. [14])
for h(s) = s. In the case h(s) = (1 + s)1/2, (1) models the self-channeling of a
high-power ultra short laser in matter; see [4], [6], [8], [23] and the references in
[5]. Equation (1) also appears in plasma physics and fluid mechanics [13], [14], [17],
[19], [21], in the theory of Heisenberg ferromagnets and magnons [2], [12], [15], [22],
[25], in dissipative quantum mechanics [10] and in condensed matter theory [18].
In the mathematical literature very few results are known about equations of the
form (1).

We consider the existence of standing wave solutions for quasilinear Schrödinger
equations of form (1) with h and f as pure power functions of the dependent variable
(though our method would apply to a more general type of nonlinearity). We con-
sider the case h(s) = sα, f(s) = λs

p−1
2 and κ > 0. Putting z(t) = exp(−iF t)u(x)

we obtain a corresponding equation of elliptic type which has a formal variational
structure:

−∆u+ V (x)u − ακ(∆(|u|2α))|u|2α−2u = λ|u|p−1u, u > 0, in RN ,(2)

where V (x) = W (x)−F is the new potential function. By a simple scaling, without
loss of generality, we may assume ακ = 1 (corresponding to a new λ) throughout the
paper. In the following we always assume V ∈ C(RN ,R) and infRN V (x) > 0. We
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also assume N ≥ 2 since results for N = 1 have been given in [20]. Let 2∗ = 2N
N−2

for N ≥ 3 and 2∗ =∞ for N = 2. We consider several types of potentials.
(V1) lim|x|→∞ V (x) = +∞.
(V2) V is radially symmetric, i.e., V (x) = V (|x|).
(V3) V is periodic in each variable of x1, · · · , xN .
(V4) V∞ := lim|x|→∞ V (x) = ||V ||L∞(RN ) <∞.

Theorem 1.1 (The compact case). Let α > 1
2 and 2 < p+1 < 2α2∗. Assume (V1)

or (V2). Then there exist λn → ∞ such that (2) has a solution. If in addition
4α ≤ p+ 1, there also exist λn → 0 such that (2) has a solution.

Theorem 1.2 (The locally compact case). Let α > 1
2 and 4α ≤ p + 1 < 2α2∗.

Assume (V3) or (V4). Then (2) has a solution for a sequence of λn → ∞ and a
sequence of λn → 0.

Remark 1.3. The second author has given results on (2) in [20]. We emphasize here
that for α > 1

2 , 2α2∗ > 2∗ and the condition 4α ≤ p + 1 < 2α2∗ can be satisfied
for all dimensions N . The result in Theorem 1.1 was proved in [20] for the case:
N = 1, α = 1, 2 < p + 1; and the result in Theorem 1.2 was proved in [20] under
the assumptions: N = 1, α = 1, 4 ≤ p+ 1.

Remark 1.4. It would be interesting to know whether solutions exist for all λ > 0
in (2). We shall discuss this in a forthcoming paper.

Theorems 1.1 and 1.2 will be proved in Sections 2 and 3, respectively.

2. Ground state solutions – The compact case

We consider a family of minimization problems, for a > 0

ma = inf
Ma

E(u)(3)

where

Ma = {u ∈ X | ||u||p+1 = a},

E(u) =
∫

RN

(|∇u|2 + V u2)dx + 2α
∫

RN

|u|2(2α−1)|∇u|2dx

and in case (V1)

X = {u ∈ H1,2(RN ) |
∫

RN

V (x)u2dx <∞}

with norm given by ||u||2 =
∫
RN (|∇u|2 + V u2)dx, and in case (V2)

X = H1,2
r (RN ) = {u ∈ H1,2(RN) | u is radial}.

In both cases, X is a subspace of H1,2(RN ). We also need another Sobolev
space D1,2(RN ) for N ≥ 3 which is the completion of C∞0 (RN) under the norm
||u||2 =

∫
RN |∇u|2dx. By the Sobolev inequality, D1,2(RN ) is continuously em-

bedded into L2∗(RN ). Solutions of (2) will be shown to exist as minimizers of the
above minimization problems which are called ground state solutions of (2). Under
(V1) or (V2) we have that the embedding from X into Lp+1(RN) is compact (e.g.,
[1], [11], [24], [26]).
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Lemma 2.1. For all a > 0, ma is achieved at some ua ∈ Ma which is a weak
solution of equation (2) with λ = λa satisfying λa ∈ ( ma

ap+1 ,
2αma
ap+1 ).

Proof. We fix a > 0. Let (un) ∈ Ma be a minimizing sequence for ma. Then
by the compact embedding result from X into Lq(RN ) for 2 ≤ q < 2∗, we first
have un ⇀ u in X (weak convergence) and un → u in Lq(RN ) for 2 ≤ q < 2∗.
Since ∇(u2α

n ) is uniformly bounded in L2(RN ), by the Sobolev inequality we have
||u2α

n ||2∗ ≤ C, which gives ||un||2α2∗ ≤ C. By Hölder inequality we have un → u in
Lq(RN ) for 2 ≤ q < 2α2∗. Then we claim

lim
n→∞

∫
RN

(|∇un|2 + V u2
n)dx+ 2α

∫
RN

|un|2(2α−1)|∇un|2dx ≥ E(u).(4)

To see this let us observe that the first integral is the norm of un in X which
makes it weakly lower semi-continuous in X . The second integral in E(un) can
be regarded as the D1,2(RN ) norm of vn = (un)2α when N ≥ 3. Since vn is
bounded in D1,2(RN ) there is v ∈ D1,2(RN ) such that vn ⇀ v in D1,2(RN) (weak
convergence). Also we may assert that un → u a.e. in RN and vn → v a.e. in
RN . From this we have v = u2α. Therefore the second integral is bounded from
below by

∫
RN |u|2(2α−1)|∇u|2dx. Thus we have proved the claim when N ≥ 3. For

N = 2, we use the continuous embedding X into Lq(RN ) for any 2 ≤ q < ∞
(instead of using D1,2(RN)) and a similar argument works. Hence we obtain that
ma is achieved at some u ∈ Ma. Since we may assume un ≥ 0 we have u ≥ 0. By
the Lagrange multiplier theorem ([7]) we conclude that u is a weak solution of (2)

−∆u+ V (x)u − (∆(|u|2α))|u|2α−2u = λa|u|p−1u, in RN ,(5)

where λa is the Lagrange multiplier. Multiplying the equation by u and integrating
over RN we get

λa ∈ (
ma

ap+1
,

2αma

ap+1
).(6)

In order to show there exist λn → ∞ and λn → 0 such that (2) has a solution,
we need the following lemma which does not depend on (V1) and (V2) and will
also be used again later.

Lemma 2.2. Assume ma is achieved for all a > 0. Let ua be a minimizer and λa
the corresponding Lagrange multiplier. Then λa → ∞ as a → 0 when 2 < p + 1,
and λa → 0 as a→∞ when 4α ≤ p+ 1.

Proof. To show λa → ∞ as a → 0 we assume to the contrary that there exist
an → 0 such that λn = λan ≤ C1. By (2) we have un uniformly bounded in X and
vn = u2α

n uniformly bounded in D1,2(RN ), so by embedding theorems we have un
bounded in Lq(RN ) for any 2 ≤ q ≤ 2α2∗. Especially, un is bounded in Lp+1(RN )
and we have with s satisfying 1

p+1 = s
2 + 1−s

2α2∗

||un||p+1
p+1

≤ ||un||s(p+1)
2 ||un||(1−s)(p+1)

2α2∗

≤ C(||un||p+1
X + ||u2α

n ||
2α(p+1)
2∗ )

≤ C(||un||p+1
X + ||∇(u2α

n )||2α(p+1)
2 ).

(7)
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Here C is a constant independent of n. On the other hand, using ||un||p+1 = an → 0
and the equation, we have

||un||2X + (2α)2

∫
RN

|∇u2α
n |2dx = λn

∫
RN

|un|p+1dx ≤ C1a
p+1
n → 0.

Then using α(p+ 1) > p+1
2 and the above two inequalities we have

||un||2X + (2α)2

∫
RN

|∇u2α
n |2dx

= λn

∫
RN

|un|p+1dx

≤ C1C(||un||2X +
∫

RN

|∇u2α
n |2dx)

p+1
2

(8)

where C is independent of n. This implies ||un||2X +
∫
RN |∇u2α

n |2dx ≥ C2 for some
C2 > 0, for p+ 1 > 2. This is a contradiction with ||un||2X +

∫
RN |∇u2α

n |2dx→ 0.
Next, we show that if p+ 1 ≥ 4α, λa → 0 as a→∞. To see this, let us observe

that if u ∈M1, au ∈Ma. Then by a simple scaling argument, for a ≥ 1 we have

ma ≤ a4αm1

and for a ≤ 1

ma ≥ a4αm1.

Then using (6), for 4α < p+ 1 we have as a→∞

λa ≤
2αma

ap+1
≤ 2αm1a

4α−(p+1) → 0.

The case of p+1 = 4α is treated next. For any ε > 0, we first choose uε ∈ C∞0 (RN )
such that 2α

∫
RN |uε|2(2α−1)|∇uε|2dx < ε

∫
RN |uε|p+1dx. This can be obtained by

choosing uε(x) = u0(εx) for some u0 ∈ C∞0 (RN ) with ε small. We may assume
||uε||p+1 = 1 (since p+ 1 = 4α) so that auε ∈ Ma. Then since p+ 1 = 4α > 2, for
a large we have

ma ≤ E(auε)

≤ a2

∫
RN

(|∇uε|2 + V u2
ε)dx + 2αa4α

∫
RN

|uε|2(2α−1)|∇uε|2dx− εa4α + εa4α

≤ εa4α.

(9)

This shows lima→∞
ma
a4α = 0. Then using (6) we get λa → 0 as a→∞.

Proof of Theorem 1.1. Theorem 1.1 follows from the last two lemmas.

Remark 2.3. (V1) can be replaced by any condition that guarantees the compact
embedding from X into Lp+1(RN ); see for example [1], [11].

3. Ground state solutions – The locally compact case

In this section, we consider the cases where the potential V satisfies (V3) or
(V4). The space X is taken as H1,2(RN ). Ma and ma can be defined as in the
last section. Due to Lemma 2.2 we only need to prove that ma is achieved at some
ua ∈ Ma. Since the proof is the same we just treat the case a = 1 and we write
m1 = m and M1 = M for simplicity.



SOLITON SOLUTIONS 445

Lemma 3.1. Let (un) ⊂ M be a minimizing sequence for m. Then there is β ∈
(0, 1] and xn ∈ RN such that for any ε > 0 there exists R > 0, for any R′ ≥ R

lim
n→∞

∫
BR(xn)

|un|p+1dx ≥ β − ε(10)

and

lim
n→∞

∫
RN\BR′ (xn)

|un|p+1dx ≥ (1− β)− ε.(11)

Proof. For a minimizing sequence un we have that
∫
RN |un|2(2α−1)|∇un|2 is bounded

which implies that
∫
RN |∇u2α

n |2 is bounded. Thus u2α
n is uniformly bounded in

D1,2(RN ), and we have that un is uniformly bounded in L2α2∗(RN) by the Sobolev
embedding. Also because un is bounded in L2(RN ) we get that un is bounded in
Lq(RN ) for all q ∈ [2, 2α2∗] by the Hölder inequality. Especially, vn = u2α

n is
bounded in L2(RN ). This implies that u2α

n is bounded in H1(RN ). Note that
||vn|| p+1

2α
= 1. By P.L. Lions’ Lemma ([16]), there is β ∈ (0, 1] and xn ∈ RN such

that for any ε > 0 there exists R > 0 such that for any R′ ≥ R, as n→∞,∫
BR(xn)

|un|p+1dx =
∫
BR(xn)

|vn|
p+1
2α dx ≥ β − ε

and ∫
RN\BR′ (xn)

|un|p+1dx =
∫

RN\BR′ (xn)

|vn|
p+1
2α ≥ (1− β)− ε.

�

Proof of Theorem 1.2. We first consider the case (V3). Let un be a minimizing
sequence. From Lemma 3.1, we get β ∈ (0, 1], and a sequence xn such that (10)
and (11) hold. We may assume the components of xn are integer multiples of the
periods of V (x). Thus un(· + xn) is still a minimizing sequence. If β = 1 we get a
strong convergence of un(·+xn)→ u in Lp+1(RN ), and a similar argument to that
in the proof of Theorem 1.1 finishes the proof. If β < 1 we derive a contradiction as
follows. For ε > 0 and R > 0 given in Lemma 3.1, let ηR(t) be a smooth function
defined on [0,∞) satisfying ηR(t) = 1 for t ≤ R and ηR(t) = 0 for t ≥ 2R and
η′R(t) ≤ 2

R . Let ηcR(t) = 1− ηR(t). Define

vn(x) = ηR(|x− xn|)un(x) and wn(x) = ηcR(|x− xn|)un(x).

Then it is easy to see for n large

|
∫
|vn|p+1dx − β| ≤ ε

and

|
∫
|wn|p+1dx− (1− β)| ≤ ε.
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Also a direct computation shows that

∫
RN

(|∇un|2 + V u2
n)dx+ 2α

∫
RN

|un|2(2α−1)|∇un|2dx

≥
∫

RN

(|∇vn|2 + V v2
n)dx+ 2α

∫
RN

|vn|2(2α−1)|∇vn|2dx

+
∫

RN

(|∇wn|2 + V w2
n)dx+ 2α

∫
RN

|wn|2(2α−1)|∇wn|2dx −
C

R
,

(12)

where C > 0 is independent of n, ε, R. Assume un(·+ xn) converges weakly to u in
X and let uR = u|BR(0). Then uR 6= 0 for R large because β > 0. Then by the fact
p+ 1 ≥ 4α > 2, we have

m+ o(1)

= E(un)

≥ ||vn||4αp+1E(vn/||vn||p+1) + ||wn||4αp+1E(wn/||wn||p+1)

+ (||vn||2p+1 − ||vn||4αp+1)
∫

RN

(|∇vn|2 + V v2
n)

+ (||wn||2p+1 − ||wn||4αp+1)
∫

RN

(|∇wn|2 + V w2
n)− C

R

≥ m(||vn||4αp+1 + ||wn||4αp+1) + (||uR||2p+1 − ||uR||4αp+1)
∫

RN

(|∇uR|2 + V u2
R)− C

R

≥ m[(β − ε) 4α
p+1 + (1 − β − ε) 4α

p+1 ]

+ (||uR||2p+1 − ||uR||4αp+1)
∫

RN

(|∇uR|2 + V u2
R)− C

R
.

(13)

Letting n→∞ and then ε→ 0 (which implies R→∞), we get a contradiction for
p+ 1 ≥ 4α. This shows that β = 1. This completes the proof for the case of (V3).

For the case of (V4) we again consider a minimizing sequence un ⊂M . Applying
Lemma 3.1, we get β > 0 and xn ∈ RN such that for any ε > 0 there is R > 0
such that (10) and (11) hold. We show here that β = 1 and xn is bounded in RN ,
which together imply that un converge strongly in Lp+1(RN ). We show β = 1 first.
Assume for contradiction β < 1. Similar to the proofs above, we define vn and wn
with ε and R > 0. Let

m∞ = inf
u∈M

(
∫

RN

(|∇u|2 + V∞u
2)dx+ 2α

∫
RN

|u|2(2α−1)|∇u|2dx),

i.e., the infimum of E(u) over M with V (x) replaced by V∞ in E(u). Then m∞ is
achieved by the proof in the first half above since (V3) is satisfied by a constant, say
at u ∈M which we may assume to be positive in RN \ {0}. Using this u as a test
function we can show that if V (x) is not identically equal to V∞, then m < m∞.
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Now if β ∈ (0, 1), we can follow a similar argument as above to get a contradiction:

m+ o(1)

= E(un)

≥ ||vn||4αp+1E(vn/||vn||p+1) + ||wn||4αp+1E(wn/||wn||p+1)

+ (||vn||2p+1 − ||vn||4αp+1)
∫

RN

(|∇vn|2 + V v2
n)

+ (||wn||2p+1 − ||wn||4αp+1)
∫

RN

(|∇wn|2 + V w2
n)− C

R

≥ m(||vn||4αp+1 + ||wn||4αp+1) + (||uR||2p+1 − ||uR||4αp+1)
∫

RN

(|∇uR|2 + V u2
R)− C

R

≥ m[(β − ε)
4α
p+1 + (1 − β − ε)

4α
p+1 ]

+ (||uR||2p+1 − ||uR||4αp+1)
∫

RN

(|∇uR|2 + V u2
R)− C

R

(14)

by sending n→∞, ε→ 0 (R→∞). Thus, β = 1.
Next, we assume that β = 1 and |xn| → ∞ as n→∞. Then we have wn → 0 in

L2(RN ). Then as we send n→∞, ε→ 0,

m+ o(1) = E(un)

≥ ||vn||4αp+1E(vn/||vn||p+1)− C

R

≥ ||vn||4αp+1E∞(vn/||vn||p+1)− C

R
≥ m∞,

(15)

a contradiction with m < m∞. The proof is complete.
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