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Abstract
Consider the following inequalities due to Caffarelli, Kohn, and Nirenberg [6]:
2/p
/ XIPPlulPdx | < Cap / IX|~?2|vu|? dx
RN RN

where, forN > 3, —o0o < a < (N=-2)/2,a < b <a+1 andp =

2N/(N — 2+ 2(b —a)). We shall answer some fundamental questions con-
cerning these inequalities such as the best embedding constants, the existence
and nonexistence of extremal functions, and their qualitative properties. While
the casea > 0 has been studied extensively and a complete solution is known,
little has been known for the case< 0. Our results for the case < O re-

veal some new phenomena which are in striking contrast with those for the case
a > 0. Results folN = 1 andN = 2 are also given(© 2001 John Wiley &

Sons, Inc.

1 Introduction

In [6], among a much more general family of inequalities, Caffarelli, Kohn, and
Nirenberg established the following inequalities: Fona# CS°(RN),

2/p
(1) [ xrdx) < cu [ ixvuiax
RN RN
where, forN > 3,
N — 2 2N
1.2) — a , a<b<a+1l, and = .
(1.2) 0 <a<—5 =b=at P=N_2+2b-a
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The casedN = 2 andN = 1 will be treated in a separate section. The conditions
for these cases are, fof = 2,

(1.3) —c0o<a<0, a<b<a+1l, and p:b .
and, forN =1,

1 1 2
14) - —— - <b 1 d =
(1.4) w<a< 5 a+2< <a+1, and p T
Let D12(RN) be the completion oE5°(RN) with respect to the inner product
(1.5) (u,v) = f IX|7?2Vu - Vo dx.

RN

Then we see that (1.1) holds fore D12(RN). We define
(1.6) S(a, b) = inf Eap(u),

ueDy*(RN)\(0}
to be the best embedding constants, where
Jan IXI72| VUl dx
(e IXI72PluP dx)”
The extremal functions foB(a, b) are ground state solutions of the Euler equation
(1.8) —div(x|72Vu) = [x|®PuPt, u=>0, inRM

This equation is regarded as a prototype of more general nonlinear degenerate el-
liptic equations from physical phenomena (e.g., [2, 12] and references therein).
Note that the Caffarelli-Kohn-Nirenberg inequalities (1.1) (see also general-
izations in [19] by Lin) contain the classical Sobolev inequaldy£ b = 0)
and the Hardy inequalitya( = 0, b = 1) as special cases, which have played
important roles in many applications by virtue of the complete knowledge about
the best constants, extremal functions, and their qualitative properties (see e.g.,
[6, 13, 15, 18] and references therein). Thus it is a fundamental task to study the
best constants, existence (and nonexistence) of extremal functions, as well as their
qualitative properties in inequality (1.1) for parametendb in the full parameter
domain (1.2).
Much progress has been made for the parameter region

(1.7) Eap(u) =

O<acx< a<b<a+1,

(to which we shall refer as th@*nonnegative region”). In[1, 23], the best constant
and the minimizers for the Sobolev inequality £ b = 0) were given by Aubin

and Talenti. In [18], Lieb considered the case= 0, 0 < b < 1, and gave the
best constants and explicit minimizers. In [11], Chou and Chu considered the full
a-nonnegative region and gave the best constants and explicit minimizers. Also
for this a-nonnegative region, Lions in [22] (fa = 0) and Wang and Willem
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(for a > 0) in [25] established the compactness of all minimizing sequences up to
dilations provideda < b < a + 1. The symmetry of the minimizers has also been
studied in [11] and [18]. In factall nonnegative solutions i®D2>2(RN) for the
corresponding Euler equation (1.8) aaglially symmetriqin the casea = b = 0,
they are radial with respect to some point) and explicitly given (see [1, 11, 18, 23]).
This was established in [11], where a generalization of the moving plane method
was used (e.g., [5, 10, 14]).

On the other hand, it seems that little is known for parameters ia-thegative
region

—oco<a<0, a<b<a+1.

This also applies ttN = 1 andN = 2, with b in the corresponding intervals (1.4)
and (1.3). The casel < a < 0 andb = 0 was treated recently by Caldiroli
and Musina in [7], who gave the existence of ground states. The goal of this paper
is to settle some of the fundamental questions concerning inequalities (1.1) with
parameters in tha-negative region, such as the best constants, the existence and
nonexistence of minimizers, and the symmetry properties of minimizers. For the
a-negative region we shall reveal new phenomena that are strikingly different from
those for thea-nonnegative region.

To state the results, 1&,(RN) be the best embedding constant freth(RN)
into LP(RNY, i.e.,

Vul|? 4+ udx
SRV = inf Jan IVUI” + .
ueHL(RN)\{0} (fRN |U|de)5

In the theorems stated below, we assurhe> 3. Results folN = 1 andN = 2
will be given in Section 7.
THEOREM 1.1 (Best Constants and Nonexistence of Extremal Functions)

(i) S(a, b) is continuous in the full parameter domgih.2).
(i) Forb=a+ 1, we have &,a+ 1) = (%)2 and Sa,a + 1) is not
achieved.
(i) Fora < Oand b= a, we have &, a) = S(0, 0) (the best Sobolev constant
and Sa, a) is not achieved.

THEOREM 1.2 (Best Constants and Existence of Extremal Functions)

() Fora <b <a+1, Sa,b) is always achieved.
(i) Forb—a e (0,1) fixed, as a> —oo, S(a, b) is strictly increasing, and

N —2—2a)\20~®
a&m:(——?—g) [SSRY) +o(D)].

THEOREM 1.3 (Symmetry Breaking) (i)There is 3 < 0 and a function lia)
defined for a< ag, satisfying liag) = ap, a < h(a) < a+ 1fora < ag, and
a+1-—h@ — 0as—a — oo, such that for anya, b) satisfying a< ag
and a< b < h(a), the minimizer for &, b) is nonradial.
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(i) There is an open subset H inside the a-negative region containing the set
{(a,a) € R? : a < 0} such that for anya, b) € H with a < b, the minimizer
for S(a, b) is nonradial.
Though the minimizers may be nonradial, we still have the following:
THEOREM 1.4 (Symmetry Propertyfor a < b < a+ 1, any bound state solution
u of (1.8)in D12 satisfying ux) > 0 for x € RN \ {0}, possibly after a dilation
u(x) — t(N=2=22/2(¢x), satisfies thémodified inversiohsymmetry

u (%) = |x|N"?"2y(x).

Moreover, writing|x| = e~ and® = x/|x|, we have that for fixed,
_N—2-2a; _t
e 2z 'u(e o)
is even in t and monotonically decreasing in t fort0.
REMARK 1.5 Some comments are in order here.

1. In Theorems 1.1 and 1.2, we have given the best constants,foy on the
“boundary” of thea-negative region. Sinc8(a, b) is continuous, we also ob-
tain estimates fo6(a, b) near the boundary of the parameter domain. From
Theorems 1.2 and 1.3, there are no closed-form minimizers, so it seems to be
very difficult to examine the best constants in the interior of the region.

2. For a special case = 0, —1 < a < 0, the existence of a minimizer was
given in [7] by using a quite different method.

3. In the casdb = a, we havep = 2*, the critical Sobolev exponent. The
situation is quite delicate since far > 0, S(a, a) is strictly decreasing in
a and is solvable as we mentioned above [11, 25], andfer O, we have
S(a, a) = S(0, 0) and the nonexistence result in Theorem 1.1.

4. The results in (i) and (ii) of Theorem 1.3 overlap, but neither implies the
other. The importance of (ii) is that symmetry breaking occurs foa atl 0
if bis sufficiently close ta.

5. For Theorem 1.3(i)ao andh(a) will be given explicitly in the proof in Sec-
tion 6.

Our approach to the problem in this paper is quite different from that used in
the quoted previous papers (see [1, 7, 11, 18, 22, 23, 25]) in which the problem was
worked directly inD}2(RN), and we shall take a detour to convert the problem to
an equivalent one defined dt'(R x SN-1). While taking advantage of the two
formulations, we shall work mainly with the equivalent one AR x SN—1).

The reformulation enables us to make use of a combination of analytical tools such
as a compactness argument, rescaling, the concentration compactness principle,
bifurcation analysis, the moving plane method, etc. Moreover, our approach also
gives a different proof of inequalities (1.1) (see Remark 2.4).

The organization of the paper is as follows. In Section 2, we shall introduce a
transformation that transforms our problemR® to one on the spad® x SN-1!
on which we have a family of inequalities corresponding to (1.1) and an Euler
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equation corresponding to (1.8). The two problems will be shown to be equivalent,
and we shall mainly work on the transformed oneRrx SN~1. The advantage

in working on the latter is that the equation is an autonomous one and is defined
in HY(R x SN-1). Radial solutions (as we shall see, the only bound state radial
solutions are the ground state solutions in the radially symmetric class) will be
examined completely and their energy levels will be computed so that some com-
parison arguments can be done later. In Section 3, we prove Theorem 1.1, first
establishing the continuity oB(a, b) in (a, b) and then giving the nonexistence
result for the casé = a with a combination of continuity and comparison argu-
ments. In Section 4, the existence of a minimizer for the easeb < a + 1 will

be given by using a compactness argument; an asymptotic estim&@efdr) as

a — —oo will be given using a concentration compactness principle. In Section
5, we establish the symmetry-breaking result (Theorem 1.3). First a bifurcation
analysis will be done to claim the symmetry breaking doaway from 0. Fora

close to 0 it is much subtler, and some continuity and comparison arguments will
be employed. Section 6 is devoted to establishing the modified inversion symmetry
(up to a dilation) forall bound state solutions of (1.8) by using the moving plane
method. In Section 7, we treat the cagés= 1 andN = 2. ForN = 1 we

have a complete solution for the problem including the identificaticalldiound

state solutions. Finally, in Section 8, we state results for a related problem that
can be solved using our results for (1.8), and we also point out some related open
guestions in Section 9.

2 An Equivalent Problem and Some Preliminaries

In this section, we start by introducing a family of transformations that will
transform our original problem to one defined on a cylinBex SN—1. The two
problems will be shown to be equivalent in a sense that will be precisely specified.
Then some preliminary results on the radial solutions will be given.

2.1 Equivalent Problems onR x SN—1

To problem (1.1) and equation (1.8) &Y we shall derive an equivalent mini-
mization problem and corresponding Euler equatioiRonSN~1. We shall use the
notation® = R x SN~1. While working on both problems to take advantage of the
two formulations, we shall get most of our results on the cylin@eFor integrals
over a domain included i@, by du we denote the volume element én Also,
by |Vu|? we understangd' u;u; and(g'") are the components of the inverse matrix
to the metric induced frolRN+1. For points on® we use either the notationto
identify a point inRN*2 or (t, 9) to identify a point inR x SN-1.

To u, a smooth function with compact support®t \ {0}, we associate, a
smooth function with compact support én by the transformation

N-2-2a X
2.1 = |X|” 2 —1 ,— |-
(2.1) u(x) = IX| v( nix| |X|)
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Here forx € RN \ {0}, witht = —In |x| andd = x/|x|, we havet, 6) € C.
Let us denote by_E(RN) = {u : fRN IX|7PP|lulPdx < oo} the weightedL P
space. We need the foIIowing lemma.

LEMMA 2.1 Fora < 832, a<b <a+1,and p= y—255. it holds that

DI2RN) = CFRV\ (0],

where]| - || is the norm inD22(RN) given by(1.5). Moreover, Lf (RV) is also given
by the completion of £ (RN \ {0}) under its norm.
PROOF. By the definition ofD1}2(RN), it suffices to show

CE®N) ¢ CERN\ (o).

Let p(t) be a cutoff function that is 1 far > 2 and 0 for 0< t < 1. For a fixed
u € CF(RN), we defineu.(x) = p(Ix|/e)u(x) € C(RN \ {0}). Then itis easy
to check thatju, — u|| — 0 ase — 0. The second part is similar. O

Now foru € CS°(RN \ {0}), by a direct computation we have

N—2—2a \?
/|x|2a|Vu|2(x)dx: f Ix|~N (|V9v|2+ <vt + #v) ) dx:
RN RN

therefore
N-—2-2a \?
/|x|2a|Vu| (X)dX—/IV9v| —i—(vH—fv) du
N—-2-2a
/Wevl + 02 + < > ) v2du.
Also,

/IXI_pr”(X)dX=/IXI_vadx=/v”du.
RN RN c

From these and Lemma 2.1, we immediately have the following:
PrROPOSITION2.2 The mapping given i(2.1)is a Hilbert space isomorphism from
DL2[®RN) to HY(@) where the inner product on HC) is

N—-2-2a\?
(v,w):va-Vw—F — vwdu .

Now we define an energy functional ¢t(C):
Jo IVaul2 + 0 + (N=22)% 2 dy

(2-2) Fa,b(v) =
([ Iv1Pdu)®®
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If ue HI2(RN) andv € H(@) are related through (2.1), then
Eab(U) = Fap(v).
Moreover, ifu is a solution of (1.8), then satisfies

N —2—2a)\?
(2.3) —Utt—A9U+<f) v=vP"1, v>0, onC
wheret = —In|x| and Ay is the Laplace operator on thé&\ — 1)-sphere. We

collect these observations in the following:
PrRoPOSITION2.3 With a, b, and p satisfyinfl.2), we have

(i) fu e D2 andv € HY(C) are related through(2.1), then Ep(u) =
Fab(v).
(i) For S(a, b) defined in(1.6), it holds Sa, b) = infy1e)\ 0 Fab(v).
(iii) Solutions of(1.8)and (2.3)are in one-to-one correspondence, being related
through(2.1).

REMARK 2.4 Our approach here gives a new independent proof of the Caffarelli-
Kohn-Nirenberg inequalities for the considered parameters, because by the clas-
sical Sobolev embeddings from(€) into LP(€), Fap(v) has a positive lower
bound onH(€) and the transformation (2.1) gives the desired inequalities on
DLI2RN),

REMARK 2.5 As motivation, we mention that transformations of similar nature
to (2.1) have been used in the past to stuagial solutions(e.g., [18]), which

link two ODEs. For PDEs, this was used recently for the Yamabe protdem (

b = 0) in [17]. In this paper we have develop#tk full-blown versiorof the
transformations to deal with solutions of PDEs (1.8), and furthermore we have
established the equivalence of the function spaces involved.

2.2 Invariance of the Problem (1.8)

In order to study the symmetry property of solutions, we examine the invariance
of the problem under the transformation (2.1). As in the case of the Yamabe prob-
lem (a = b = 0), the group of transformations that leaves problem (1.8) invariant
is noncompact. The group of translationsRN is a symmetry group for (1.8) only
in the casea = b = 0. On the other hand, the dilations

(2.4) uX)=r N%ﬁau(ﬂcx), >0,

leave the problem invariant for allandb; i.e., if u is a solution of (1.8), so ig,.

This still holds forN = 2 andN = 1, but forN = 1 the situation is a bit different

and there is a two-parameter family of dilations (see (7.3)). The group that leaves
(2.3) invariant, corresponding to dilationsiY, is the group of translations in the
t-direction. Ifv andv, in H(C) are related ta andu, in D1?(RN) through (2.1),

then

v (t,0) =v(t —Int,0).
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Finally, the following modified inversion invariance of (1.8),
X
25 —~ —y|-(N=2-2a) [ 7~
(2.5) G(X) = |x] ul e
translates on the cylinder to the following obvious symmetry of (2.3),

5(t, 0) = v(—t, 0).

2.3 Radial Solutions

Let :Daljé(RN) be the subspace @12(RN) consisting of radial functions. De-
fine

(2.6) R(a, b) = inf Eap(u).
ueD; RRN)\(0)

By Proposition 2.3(i) we also have

R(a, b) = inf Fap(u),
ueHA(@\(0}

whereHX(€) consists of functions independenttfWe shall find the exact value
of R(a, b) and the exact form of the radial solutions that achieve these constants
whena < b < a+1. We remark here that our method applies foradheonnegative
region also and in fact gives a new approach for @aheonnegative region; the
results we get agree with [11] and [18] in this region.

In order to study the radial solutions of (1.8), we shall need the exact form of
particular positive solutions for the following nonlinear second-order ODE:

(2.7) —vg+Ar v =01, v>0, InR

with p > 2. The problem can be associated to the Hamiltonian system
d
av:w, aw:kzv—vpfl.

We have the Hamiltonian
1 A2 1

H(U, w) = sz - EUZ + Evp .
All solutions correspond to level curves bf(v, w). Up to translations, there is
only one homaoclinic solutiom that is on the leveH (v, w) = 0. The levels below
this one will givev positive, periodic, and bounded away from zero. For the levels
above,v changes sign so we lose positivity. The only positive solutions that are in
H1(R) are translates of

21\ 72 _ ~p%2
(2.8) v(t):(L;) (cosh(pTZAt>) i .
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A direct calculation gives that for theabove,
fpv2+222dt et (T2(5R) "

(Lord)?® ~ P(p-2®ar ( r(25) ) '

Now, when searching for radial solutions, equation (2.3) becomes

(2.9)

N —2—2a\?
(2.10) vtt—<f) v+vP1=0, v>0, onR,

which corresponds to equation (2.7) with= N=2=2_ According to (2.8), the
homoclinic solutions of (2.10) are translates of
b)

N(N —2—2a)2 \ @b’
v(t) =
(4(N -2(1+a- b)))
cospN—2-21+a—b) - airan”
 N-21+a-bh)

The radial solution iRN for (1.8) corresponding to thisis

(2.11)

b)
N(N — 2 — 2a)? “aiap 1
(2.12) u(x) = ( ) —
—2(1+a—Db 2AN—2-2a)(11ab) \ “FEa oD
(l+| |N——+ab_> 2(1+a—b)

All radial solutions inRN for (1.8) are dilations of this. Note that by substituting
in (2.9)
N—-2-2a 2N
2 —21+a—-by’
we estimate the energy of any radial solutlorHﬁ(G),
R@@, b) = Eap(u) = Fap(v),

2(1+a—h)
Nopy_ (N —2— 2a)

N—2(1+a—b)
N

2(N—(1+a—b))
N

R(a,b) = 20+ach)

2 (N — 2(1+a—h))
(2.13) an5at)

™ (o)
F ()

PROPOSITION2.6 Up to a dilation(2.4), all radial solutions of(1.8) are explicitly
givenin(2.12) and Ra, b) is given in(2.13)

REMARK 2.7 In the casa& > 0, this is the best constant as found in [11], i.e.,
R(a, b) = S(a, b). Also, fora =0 and 0< b < 1, it is the best constant found by
Lieb in [18]. In the case > 0, up to a dilation (and also a translation in the case
a = b = 0), (2.12) gives all bound state solutions of (1.8) that achieve equality in
the Caffarelli-Kohn-Nirenberg inequality (see [11, 18]).

2(l+a b)

l+a-Db
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3 Best Constants and Nonexistence of Extremal Functions

To prove Theorem 1.1(i), we need a couple of lemmas.
LEMMA 3.1 Letay < 852,89 <bg < a+ 1. Then

limsup S(a, b) < S(ap, bo) .
(@,b)— (ap,bo)

PROOF. For anye > 0, there is a nonnegative functione C3°(C) such that
&
Fao.bo(v) < S(ao, bo) + 5
Note that aga, b) — (ag, bg), vP(X) — vP(x) for all x. For anyp € [2, 2¥],

vP(X) < w(X) wherew(x) = v2(x) if v(x) < 1 andw(x) = v¥ (x) if v(x) > 1.
Clearlyw is integrable; therefore by the dominated convergence theorem we have

lim /vpd =/vp°d .
(@,b)— (ap,bp) H H

C c

From this, and because is continuous ina, we get there i$ > 0 such that
|(a, b) — (ag, bp)| < & implies

£
S(a, b) < Fap(v) < Fagp,(v) + 5= S(ag, bp) + €.
Lete — 0. ]

LEMMA 3.2 Let(pn) C [2, 2*] be a sequence convergent to p. If a sequénge
is uniformly bounded by M in HE), then

() if p € (2,2%), we have
i [ 1unl® = 1unl?] du = 05
C

(i) if p=2or p=2* we have

limsup | (Jus|™ — |up|P)du < 0.
n—oo

¢

PrROOF. We first prove (i). By the mean value theorem, there are functfgns
defined onC with values betweeip, and p such that

/Mw%—mwmu=/MNmWWWm—mmu
C C
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Sincep € (2,2*), lete > Osuchthafp — e, p+¢] C (2, 2%). Letn, be such that
for n > n, we have|p, — p| < ¢; therefore

/||Un|pn_|un|p| du <
C
1
o — pl / 1N [Un s P+ dut + / I ol
n

lup|>1 O<|up|<1

The key now is to show that the two integrals on the right-hand side are bounded
asn — oo. There is a constai@ depending only orp such that

Inu<Cu?~P* forallu>1

and 1 c

In-<—— forallO<u<1.

u up—8—2
With , )
. Vu|¢+u-d
S©@ = inf Je IVul el
ueHi@\O) ([, ulPdu)”®

we obtain

2*

" M z
In Predy < C / 2 d <C< )
f Unl[Unl P dpt < i di <€ (5o

[un>1 [upl>1

We also have that

1 M
In —1un|P*du < C 2duy < C——no.
/ P dp < / il dn < C s

O<|un|<1 O<|un|<1

This concludes the proof of (i).
For part (ii), we use the same method as above after we make the estimates as
follows: Forp = 2,

/|un|""—|un|2dus / UnlP — lun Pt
C

lun|>1

and forp = 2%,

2% 2%
/Iunlp“—lunl du < / [un|P — Jun]® dpu.
(¢

O<|up|<l

O

REMARK 3.3 In the casep = 2 or p = 2%, one can construct sequendes)
bounded inH(€) such thafu,|_» = 1 for all n, while |u,|L;n — 0 asp, — p.
Thus Lemma 3.2(ii) is sharp.
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PROOF OFTHEOREM 1.1(i): According to Lemma 3.1, it suffices to show that
liminf )S(a, b) > S(ag, bo) .

(a.b)—(a0.bo
Assume there is a sequen@g, b,) — (ag, bg) such that
(3.1) lim S(ay, bn) < S(ao, bo) -

Then there are > 0 and functiongv,) ¢ H(C) such that

/|Un|prl du=1
C

S(ag, bp) — & > Fan,bn (Vn) -
Clearly, (vn) is bounded irH1(€). From Lemma 3.2, we get
Fan,bn (vh) +0(1) > Fao,bo(vn) > S(ap, bo) .
This and (3.1) give the desired contradiction. O

and

REMARK 3.4 A similar proof shows thaR(a, b) is continuous in(a, b) in the full
parameter region, including the upper boundgry= a + 1} for which no radial
solutions exist.

PROOF OFTHEOREM 1.1(ii): Clearly, Faay1(v) > (N — 2 — 2a)/2)? for all
v € H1(@). On the other hand, one can easily construct a sequepce H(C)
of radial functions such thd, 5. 1(vy) — ((N — 2 — 2a)/2)2. Therefore,
N —2—2a\?
5 .
For nonexistence of minimizers, one notes thatfer 1, the equation

—Av +A2v =

has no nonzero solution iR*(@). For0 < » < 1,i.e,(N—-4)/2 < a <
(N —2)/2, assume thaB(a, a + 1) is achieved by some functiane H(@). By
the maximum principley > 0 everywhere. Denote bi/(t) the average of on the
sphere¢ = const. Thenf is a positive function irH(R) and satisfies the ODE

—fu+22f=f.

The only nonnegative solution i = 0. Therefore for alb < -2, the infimum
S(a,a+ 1) is not achieved. O

S(a,a+1) = <

PROOF OFTHEOREM 1.1(iii): The casea = b = 0 is well known (the Yam-
abe problem irRN). In this case, the minimize®(0, 0) is achieved only by func-
tions
(N-2)/2

)<N—2>/2 ’

"
(12 + Ix — yI?

U,y(x)=C nw=>0, yeRN.
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Note that fora € (—=N/2, (N —2)/2), U,y € D12 Fory # 0 by a direct
computation we get faa € (—N/2, (N — 2)/2)

S(O, 0) - ||m Ea’a(UM’y) .
u—0

Due to this fact one concludes that fBoe (—N/2, (N — 2)/2),
(3.2) S(a,a) < §(0,0).

On the other hand, by the expression (2.2), for any HX(C) \ {0}, Faa(v) >
Fo.o(v) = S(0,0). Hence,S(a, a) = S(0, 0) for all a € (—N/2, 0). Next, we fix
a; € (—N/2,0). Foranya < —N/2 fixed and any > 0, there isx € H(€) such

that
&

Faa®) = 3004 o T a@? - 209
wherer(a) = (N — 2 — 2a)/2. Together withS(0, 0) < Foo(v) < Faya(v), We
conclude

f@ vzd:u < &
(fo 02 dp)?? ~ 22 = A(@)?) |

Then
Jo vidu
(Jo ol dp)™*

Faa(v) = Faya,(v) + (L)% — A(@1)?) < S(0,0) +¢.
Thatis,S(a, a) = S(0, 0) for alla < 0.

Next we showS(a, a) is not achieved fom < 0. If the conclusion is not
true, for somea < 0 andv € H(@) we getS(a,a) = F.a(v). But using
Faa(v) > Foo(v) > S0, 0), we get a contradiction t8(a, a) = S(0, 0). O

4 Best Constants and Existence of Extremal Functions

In this section we prove the existence of a minimizerdot 0 anda < b <
a+ 1. We also give an asymptotic estimateSga, b) as—a — oo, whileb—a €
(0, 1) is a fixed constant.

We shall need the following lemma. It is analogous to a resulRBndue to
P. L. Lions [21]. The proof is similar to the proof of lemma 1.21 in [26]. We omit
the proof here.
LEMMA 4.1 Letr > 0and2 < q < 2*. If (wy) is bounded in H(€) and if

sup lwpl9dp — 0 asn— oo,

eC
Br(y)ne€

thenw, — 0in LP(@) for 2 < p < 2*. Here B (y) denotes the ball ilRN+* with
radiusr centered at y.
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ProOOF OFTHEOREM 1.2(i): Leta < 0 anda < b < a+ 1 be fixed. Consider
a minimizing sequenceav,) C H(€) such that

/lwnlpd,u:l foralln > 1
C

and

N-2-a\?
/|an|2+<#) wﬁdu—> S(a,b) asn — oo.
)

According to Lemma 4.1,

§ = liminf supf w2du | > 0.

n—oo | yee
Br (y)ne

Eventually by passing to a subsequence, we may assume theigare ¢ and
Yo € C fixed such that the sequeng@x) = wn(X — ¥n) has the property

é
/ lon2dp > 5
Br (yo)NC
Clearly,
/|vn|pd,u =1 foralln>1
C
and

N-2-a\?
/lenlz—F(i) vﬁdu—) S(a,b) asn — oo.
e

Without loss of generality we can assume

vn — v weaklyinH(e),
v — v INL2.(C),
vy — v almost everywhere i® .

According to the Brezis-Lieb lemma [3], we have

p H p
1= |U|Lp + nll_>moo |vn — U|Lp .
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Hence

2

N—2—a)\?
:/|VU|2+<T) Usz
C

. N-2-—a\?
+n||m /|an—v|2+(#> (vn — v)?du
C

> S(a,b) (Jol2s + A= Ife)?).

Sincev # 0, we obtainv|.» = 1, and so

N-2-a)\’
/ V| + <%> v’ du = S, b).
¢

N-—2-—a)?
S(a, b) = nILmoo/ |Vunl? + (78) vrz,du
e

O

Letb —a € (0, 1) be fixed so thap € (2, 2*) is also fixed. We shall consider
the asymptotic behavior @&(a, b) as—a — oo.

PROOF OFTHEOREM 1.2(ii): We use a rescaling argument. lgt: RN+ —
RN+ be the scaling map, (X) = Ax. DenoteC, = h,(C) and forv € H(@),
defineu € H(G,) by u(Ax) = v(x). For definiteness, oH(C,) we use the norm
lull?2 = Je, |Vu|? + |ul?du. We have

/|Vv|2+A2v2dM:A2N/|Vu|2+u2du

e Cr
/|v|pdu=A‘N/|u|pdu.
e Cy

Je, |Vu|? + u?du
.
(Je, uIPdp)®

and

Therefore,

Fap(v) = 2207

Now it suffices to show that
Je, IVU? +u?du

[(x):= inf - S,RY)
ueH(@)\(0} (fek |u|l°du)2/p >
asi — oo.
First we have that
(4.1) limsupl (1) < SSRN).

r—00
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We get this through a cutoff procedure. Llret> O; then for fixedx large and
y € C,, we have a projectioy = v, from B, (0) C RN to v (B, (0)) C Gy
defined as follows: IdentiffRN with the tangent space ®, aty € G;, and letyr
to be the projection froni, (0) into ¢, along directions parallel toy, the exterior
normal toG; aty. Thenv is a diffeomorphism on its image and for fixedthe
Jacobian matrix ofy tends uniformly to the identity matrix as— oo.

Denote byw € HY(RN) a function with support irB, (0) ¢ RN. Fory € G,
let u, (Yyr5 (X)) = w(x) and O outside)y (. (B (0)); then

(4.2) fquA|2+ufdu=/|Vw|2+w2dx+o(1)
Cy. RN
and
4.3) /|Ux|de=/|w|de+0(1)
C;, RN

whereo(1l) — 0 asi — oo uniformly iny.
In RN, it is known that the infimun®,(RN) is achieved by a positive function
w, radially symmetric about some point, which satisfies

—Aw+w=wP?l inRN,

To prove (4.1), lee > 0 and letr > rg > 0, sufficiently large, so that for a cutoff
function p(x), which is identically 1 inB;,(0) and 0 outsideB; (0), we have

Jan [V(ow)|? + (pw)?dx
(Jan(ow)Pdx)™?
Then from (4.2) and (4.3), there islarge enough such that when we consider
u(x) = (pw)(¥ (X)) € HY(C),

<Sp(RN)+;

we get
Jo, IVUP +udp [ [V(ow) 2 + (pw)?dx &

2p = 2/p 2"
(fe, uPdu) (fan (pw)P dx)
From the two inequalities we conclude that

Je, [Vu|? +u?du

(f@)L ude)Z/p

(W) < <SRN +e.

Therefore,
limsupl (A) < SS(RY) + .

A—00

We now prove
(4.4) liminfl (1) > SR,
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If (4.4) does not hold, there aeg > 0 and a sequende,,) which tends tao such
that

lo = lim 1 (An) < SRY) — &.
Then there are functions, € H1(G,) (hereC, = ¢,,) such that

[wlPdi=1 and 1Ga) < [ 190+ de < SEY - o
Cn Cn

Now we need a more detailed concentration-compactness lemma than the one
in [21] and along the lines of lemmas 4.1 and 4.2 in [24]. The result in [24] is for
the HL(RN) setting, but the proof carries over to our situation, too. We omit it here.
Forr > 0 andy,; € Cp, letQ;(r) beyy,; 1., (Br (0)).

LEMMA 4.2 Leti, — oo and u, € H(G,) be uniformly boundedwith norm
given by|lu|l® = [, IVUl® + |un|*dp). Assumef, |us|Pdp = 1. Then there is
a subsequendgtill denoted by(u,)), a nonnegative, nonincreasing sequenge
satisfying) ~, @i = 1, and sequence@/i)i C G, associated with eacl > 0
satisfying

(4.5) liminf|yni — ynjl =oo foranyi# j

such that the following property holdsf «s > 0 for some s> 1, then for any
¢ > Othere exist R~ 0, forallr > R and all¥ > R, such that

S
(4.6) limsup) _ |o; — / Un|P du

n—o0 P
=1 Qni ()

S
+ (1—2%)— / lun|Ptldu| <¢.
=1 Cn\UPLy 20 ()

In Lemma 4.2, fixs > 0 with @s > 0 such that

*.7) i“‘ i (%(IH(%N))S '

i=1

Foras > ¢ > 0, letR > 0 and(yn,i)i C G, such that for alt, r’ > R, we have

S
@48 im> e - f unlP d
i=1

Qni(r)
S
+ (1—20{;)— / lun|Pdul| < ¢.
i=1

Cn\Ui=1 @n,i r')
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We now consider a cutoff functiomnonRN that is identically 1 insiddg(0) and 0
outsideB,r(0) and|Vp| < % atany point. For i i <s, defineyy = vy, ; 2r., @S
before, and letv, j (X) = p(X)un (¥ (X)) designate functions with compact support
in RN, By a direct computation, we get

C
/ |Vwni|? + w2, dx < / |Vun|® + u2du + o(1) + =
RN Qni (2R)

with C independent off, ¢, andR, ando(1) — 0 asn — oo. Also,

flwn,ilpdxz / lun|Pdup 4+ 0(1) .
RN

Qn,i(R)
Since
2
/|an,i|2+w§’id)(2 /|wn,i|pdx S®RM),
RN RN
we obtain

C
Vual* +updu +0(1) + = =
Qnj (2R)
2
P
luplPdie +0(D) | S@®RVY).
Qi (R
Therefore,

h=1LN]

S
sC
/|Vun|2+uﬁduz > / unlPdpe | SRS +0(1) - =
e =11 (R)
From (4.8) we get

G/IVUn|2+U§duz (;ai —e) Sp(RN)—l—o(l)—%:.

Lettingn — oo and thenR — oo, we obtain
2

lg > (Zai — 8) P Sp(RN)-
i=1

Now, lete — 0 to get

s\+
Ioz<2ai> S®RY),
i=1
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which contradicts (4.7). O

5 Symmetry Breaking

For symmetry breaking, we have Theorem 1.3(i) and (ii). The results of (i)
and (ii) will be proved using different ideas. For Theorem 1.3(i), the idea is to
use bifurcation technigues and to show that for certai), by perturbing the ra-
dial solutionv, given in (2.11), there are directions in which the energy decreases.
SinceS(a, b) is achieved, the minimizer cannot be radial. This approach has been
used for other problems, for example, for bifurcation of positive solutions on an-
nular domains in [20]. On the other hand, for Theorem 1.3(ii), we shall employ
an idea in [4] by Brezis and Nirenberg (in which they studied a problem with a
nearly critical exponent on annular domains) to compare the radial least energy
andS(a, b). A continuity argument then gives the conclusion.

We first give the proof of Theorem 1.3(i). We work i*(C) here. The lin-
earization of (2.3) at the radial solutiag decomposes by separation of variables
into infinitely many ODEs. Denote by, = k(N — 2 + k) the k™" eigenvalue of
—Ay onSN~L. Fork > 0, we denote by, and fy the first eigenvalue and the
corresponding (positive) eigenfunction in the eigenvalue problem of

—ftt+A2f + ay f —(p—l)vg_zf =nuf.

This eigenvalue problem is well defined singgt) — 0 as|t| — oo. First, we
show that there aray and a functiora < h(a) < a + 1 defined fora < ag such
thata < ap anda < b < h(a) imply u1 < 0. Indeed,

- Jo F2 4222 o F2— (p— Dok 2 f2dt
= 8] .
Hi feHL(R)\(0) Jp f2dt

We usev, as a test function, and since

/U;t‘i‘)\.zvgdﬂ,:/l)apd/i,

C C
we obtain
fe va du
5.1 —(p—-2 .
(5.1) e < —(p )f@vgdu+ak

Sinceag = 0, clearly we haveiy < 0. We also have; = N — 1, and by a direct
calculation using (2.11), (5.1) gives

N1 +a—b)(N—-2-2a)?
5.2 < -
®2 M= T2atracb)(N-A+a-b)
Note that the right-hand side in (5.2) is negative for

N—-2 N-1/N=-2
5.3 = —
(5.3) a<ag > > N

+N-1.
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and
(5.4) a<b<h(@:=1+a- 2N
' - o l(@) +/12(a) — 8
where o om?
_(N-2-2a)
l(a) = N_1 +3

Hencepu is negative fora andb in this range. Note also that+ 1 — h(a) - 0
asa — —oo. Theay andh(a) above will be shown to have the property stated in
Theorem 1.3(i).

Definewy = ¢k (0) fx, wheregy is an eigenfunction of-A, on SN~ with
eigenvaluexy. (¢o(0) is just a positive constant ard (9) is a first harmonic.) We
get

(5.5) —Awy + 22wy — (p— 1)v§_2wk = UKW .

We now have the following:
LEMMA 5.1 For s small, there i$ = §(s) such thats(0) = §’(0) = O and

/ [va + 8(S)wo + sw1|Pdu = 1.
C

If, in addition, (a, b) is such thatu; < 0 (which holds fora< aganda< b <
h(a)), then for s sufficiently small,

(5.6) F(va + 8(S)wo + sw1) < F(va) .

PrROOF OFTHEOREM 1.3(i): By the above lemma, fasmall|v,y + §(S)wg +
swi|p = 1. Then (5.6) showS(a, b) < R(a, b). SinceS(a, b) is achieved, the
minimizer is nonradial. O

PROOF OFLEMMA 5.1: Set
G@,9) = / |va + dwo + sw|Pdpu.
C
We haveG(0,0) = 1 and22(0,0) = p [, v wedu > 0, sincewp > 0. By the

implicit function theorem, there is an operinterval around 0 wheré = §(s) is
differentiable and

(5.7) G(5(s),s) = 1.
Furthermore, by a direct computation apd—0) = —¢1(6), we have

G
320.0=p [ 2 tusdu = p [ 02 i20) fdu =0
C C

Differentiating (5.7) we get

9G / 3G B
(5.8) 5 (5(8).93'(8) + 5 -(3(9).9) = 0.
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Hence G G
d 0
—(0,0)8'(0) + —(0,0) =0,
53 (0,045(0) + as( )
which implies§’(0) = 0. To show (5.6) we needi’(0). Differentiating (5.8) with

respect tes again and setting = 0, we get

G 392G
——(0,0)8"(0) + —(0,0) = 0.
aa(’ ) ()+832(, )

We have

3°G G

E(O’ 0) = p(p— 1)/u§‘2wfdu and E(O, 0 = p/ug‘lwodu.

C C
Thus,
50 = - PP= D Jo v widu
pf@ U§71w0 dM
Now,
F(va + 8(S)wp + swy) =

F(va)+52/ |Vw1|2+/\2w§du+25(s)/wa.Vw0+/\2vawodu
C C

+2s/wa-Vw1+xzvaw1du+52(s)/|Vwo|2+/\2wgdu
(] C

+ 2s8(S) / Vwo - Vwy + Awowr di .
e

Sinceuwy, is radial,

/ Vva - Vwi + A2vawr dp = / v§_1w1 du =0;

C C
therefore the fourth term is 0. Also, the fifth and the sixth terms are higher order.
Hence

F(va +8(S)wg + swy) =

F(va)+szf|Vw1|2+)\2w§du+25(s)fanVwoJr,\ZvawodMJro(sZ).
C C

From (5.5) we get

/|Vw1|2+k2wfdu = (p—l)/v{f_zwfd,u—kulfwfdu.
e

c ¢
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Sincev, is a solution of (2.3), we have

/ Vva - Vwg + Avawedp = / v wo dp.

C ¢
Using the equalities above and

,(P— 1) [ vdPwidp
2/, v twodu

5(S) = —s +0(s?),

we obtain fors sufficiently small

F(va + 8(S)wg + sw1) = F(va) + 21 / w?dp 4 0(s?) < F(va).
C
The proof of Lemma 5.1 is complete. O

PrROOF OFTHEOREM 1.3(ii): First we note that by a direct computation using
(2.13) we always have for al < 0

R(a,a) > S(a,a) = S0, 0).

We argue that for angp < 0, there isg > 0 such that for all(a, b)—(ag, ag)| < &g
with a < b, S(a, b) is achieved by a nonradial function. As, b) — (ag, ag), we
have thatR(a, b) — R(ag, ag) > S(ag, ag) = S(0, 0). On the other hand, from
Theorem 1.1(i) we have th&a, b) — S(ag, ag) as(a, b) — (ag, ag). Therefore
foranyag < 0, there issg > 0 such thalS(a, b) < R(a, b) if |(a, b) — (ag, ag)| <

go With a < b. By Theorem 1.2(i),S(a, b) is achieved, and due to the strict
inequality, the minimizer foS(a, b) is nonradial. O

6 Symmetry of Solutions

We use the moving plane method [14] to show thatdox b < a + 1 any
positive solution of (2.3) on the cylinde&? is symmetric about somie = const,
SO up to a translation in thiedirection, the solution is even inand satisfies the
monotonicity property. Together with the discussion in Section 2, we get that any
solution of (1.8) satisfying(x) > 0 forx € RN\ {0}, up to a dilation (2.4), satisfies
the modified inversion symmetry in Theorem 1.4. Our argument follows closely
the method in [10] though we have a differential equation defined on a manifold
¢, while in [10] equations ilRN were treated.

Let v be a positive solution of (2.3). Far < 0 andx = (t,0) € C, denote
x* = (2u —t, 0) € C, the reflection ok relative to the hyperplane= . We let

w, (X) = v(X*) —v(X),
a function defined on the regidn, = {(t,0) € C : t < u}. Clearly,w(x) = 0 for
anyx e T, = 9%, = {(t,6) € C : t = u}. We have the following:
LEMMA 6.1 There is B > Oindependent of such that ifw,, has a negative local
minimum at(ty, 6p), then|tyg] < Ro.
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PrROOF. First, by elliptic regularity theory and the fact that

f vWdu —> 0 aslt| > oo,
T<t<t+1

we havev(t, 9) — 0 as|t| — oo. Then we takeR, to be such that

32\ P2
v(t, 0) < <p—l>

for all |t] > Ry. Sincev is a solution of (2.3)w, satisfies

(6.1) —Aw, + 2w, —aX)w, =0

in ¥, where

1
ax) =(p— 1)/ [UC) + s(UX*) — ux)]P?ds.
0

Assumexg = (to, fp) € X, is a minimum such thai,(Xo) < 0 and|to] > Ry.
Then

=
v(Xg) < v(X) < (p— 1) .
Therefore,
(6.2) a(xXg) < A2.
SinceAw, (Xp) > 0, we obtain
22wy (Xo) — a(Xo)wy, (%) = O,
which means.? < a(xp), contradicting (6.2). O

We shall need the following:

Maximum Principlelf w, is nonnegative solution of (6.1) and, is zero at
some pointinx,, thenw, = 0.

Hopf Lemmalf w, is positive onx,,, thendw, /3t < 0 at any point orT,,.

PROOF OFTHEOREM1.4: Since fort — —oo we havew,(t,0) — 0 and
w(x) = Oforallx € T,, Lemma 6.1 impliesv,(x) > 0 for x € X, with all
n < —Ro. Let uo be the largest with the property thaty,, is nonnegative oix ,.
Clearly suchug exists sincev(t, ) — 0 ast — co. We argue that

(%) w,(X) >0 forxeX,, u<uo,
() wy,, =0 onx,, .

Sincew,, > 0 for all © < po, it follows thatv; > O for allt < uo. To prove
(%), assume there i& > 0 such that for somé,, 9y), we havety < g — 8 and
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wye-s(to, Bp) = 0. By the maximum principle it follows thab,,_s = 0. This
implies thatv (g — 28, 6p) = v (1o, o). Sincedv/dt > 0, it follows that

d
a—:(t, 6p) =0 forallt [mo — 26, o] -

Therefore
awuo—ZS

ot (no — 28, 60) = 0.
By the Hopf lemma we gab,,_»; = 0. Continuing in this fashion, we obtain that
v is independent of, which is not possible. Thereforéw,/dt < 0 onT, for
w < po and therwy > 0onk,.

For (xx), assumew,, # 0. By the maximum principle and the Hopf lemma,
w,, > 0onX,, anddw,,/dt < 0 onT,,. From the definition of.o, there is a
sequenceu, \( 1o and there are pointg € X, , absolute minima fow,, , such
thatw,, (xx) < 0. By Lemma 6.1 we have thaty) is a bounded sequence; hence
(by passing to a subsequence) we can assume it converges to somgypdint
follows thatxo € T, andw,,, +(Xo) = 0, which is a contradiction.

Eventually after a translation in thedirection, we can assumg) = 0. There-
fore v is even int and monotonically decreasing for- 0.

Translations int on € correspond to dilations iRN; hence up to a dilation
u(x) — T u(rx), positive solutions of (1.8) have the modified inversion sym-
metry as given in Theorem 1.4. O

7 TheCasesdN =l1andN =2

7.1 The CaseN =1
In one dimension, equation (1.8) becomes
(7.1) —(IXI72U) = |x|"PPuP~t, u=0, inR.

We have a rather complete answer for the problem. In fact, we can identify all
solutions of (7.1). We look for solutionsthat are critical points for the energy in
DyA(R)

fR |X|—2a|u/|2 dx

(fR |X|_bp|u|pdx)2/p .

Eap(u) =
The parameter range is

a 1 a+1 b<a+1, and 2
< —= =< = .
2 7 <P= ’ P= "1 20-a

We first observe thak, ,(u) is invariant under the following rather nonstandard
dilations: for(r_, 7;) € (0, 00)?

_142a

_ 2 u(r_x), x <0,

(72) U(X) - uL,nr (X) = _142a

T, 2 u(tex), x>0.
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That is, dilations can be made independently¥ot 0 andx > 0 so thatE, p(u)
is still invariant.

Note that forN = 1 the cylinder@ = R x S° = R U R is the union of two
real lines. We denote the two componentsthyandC, corresponding t® ~ and
R, in R, respectively. The coordinates fér. andC, arey = (t, —1) € C_ and
y = (t, 1) € C,. For simplicity, we write them as (for (t, —1)) andt; (for (t, 1)).
To be more precise, for a functian(y) defined orn® we writew (y) = ws(t;) when
y =1 € C_andw(y) = wa(t,) wheny = t, € C,. To a functionu € DL2(R),

we associate a functian (corresponding to a pair af,, w,) defined onC by
7.3) ux) = (—=x)&272y, (—In(=x))  forx <O,
' u(x) = X272y, (— Inx) forx > 0,

andt; = —In|—x| for x < 0 andt, = —In x for x > 0. Then equation (7.1) is
equivalent to the system of autonomous equations: ferd, 2,
dzwi 1+2a
dt? 2

2
(7.4) ) wi = |wi|P 2w .

Critical points ofE, p,(u) on :0;»2(]1%) now correspond to critical points of a new
energy functional oH (@)

Jo IV0P? + (22)? w2 du
(Je lwiPdp)™?

It is easy to see that both integrals in the numerator and the denominator are de-
coupled as two integrals fap; andw,. Each of the two ODEs of (7.4) has the
zero solution, and according to (2.7) with= —(1 + 2a)/2, the only (positive)
homoclinic solutions are translates of

Fap(w) = , we HYe).

1-2(1+a-b)

(1+2a)° AaD
0= (g2 ra )
( (1+2a)(1+a- b)t)‘lzf%»ﬁ
" 1-2(1+a-—bh) ‘
The minimizers of, ,(w) are achieved by, for which one of two components;

or w; is identically zero and the other is a translate @ given above. According
to (2.9), the infimum is

(7.5)

(—1— 2a)2b-2
S, b) =
22(1+a—b)(_1 + 2(b _ a))—1+2(b7a)(1 +a-— b)2(l+a—b)
(7.6) 1 2(1+a—b)
Fz (2(l+a—b)>

[ (7a5)
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We observe that as \, a + % we obtainS(a, b) — —1 — 2a. Note that when
bothw; andw, are nonzero and are (possibly different) translates(tfin (7.5)
we get the energ¥a p(w) to be higher

R(a, b) = 223ta-b g p),

which is the least energy in the radial class. On this energy level, there is a two-
parameter family of positive solutions according to the two parameters that control
by how muchw,; andw, are translated from (7.5). Correspondinglyx) defined
in (7.3) is a two-parameter family of solutions for (7.1), which after a dilation given
by (7.2) for somez_, 7,) € (0, o0)? is radial inR.
Summarizing all these, we can state the main resultlfer 1 now.

THEOREM 7.1 (Best Constants and Nonexistence of Extremal Functions)

() S(a, b) is continuous in the full parameter domain.

(i) Forb = a+ 1, we have &,a+ 1) = (1+—22f")2 and Sa,a + 1) is not

achieved.

(i) Forb— (a+3)", weget $a,b) > —1— 2a.
THEOREM 7.2 (Best Constants and Existence of Extremal Functiéos) + % <
b <a+1, Sa,b)is explicitly given in(7.6), and up to a dilation of the forr{v.2)
it is achieved at a function of the for(d.3) with eitherw; = 0 and w, given by
(7.5), or vice versa. Consequently, the minimizer fga,®) is never radial.
THEOREM 7.3 (Bound State Solutions and Symmettyp to a dilation(7.2), the
only solution of(7.1) besides the ground state solutions is of the forr(i7o8) with
both w; and w, given by(7.5). Consequently, all bound state solutions(@f1),
possibly after a dilation given ifi7.2), satisfy the modified inversion symmetry.
REMARK 7.4 Due to the degeneracy, the ground state solutions are discontinuous
at 0 and identically zero in eith&_ or R,.

7.2 The CaseN =2

In this case the parameter range is
2
b—a’
With no changes in the proofs for the cade> 3, we have the following results.
THEOREM 7.5 (Best Constants and Nonexistence of Extremal Functions)

(i) S(a, b) is continuous in the full parameter domain.

(i) Forb=a+ 1, we have 8, a+ 1) = a?, and Sa, a+ 1) is not achieved.
THEOREM 7.6 (Best Constants and Existence of Extremal Functions)

() Fora<b <a+1, Sa,b) is always achieved.

(i) Forb—a e (0,1) fixed, as a> —oo, S(a, b) is strictly increasing, and

S(a, b) = (—a)**"?[S,R?) + o(D)] .
One notes in (5.3) that fal = 2 we haveag = 0. Therefore we also have the

following:

—o<a<0, a<b=<a+1l, and p=
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THEOREM 7.7 (Symmetry Breaking)rhere is a function ta) defined for a< 0,
satisfyinga< h(a) <a+ 1fora<0anda+1—h(a) - 0as—a — oo, such
that for any(a, b) satisfying a< 0 and a< b < h(a), the minimizer for &, b) is
nonradial.

THEOREM7.8 (Symmetry PropertylFor a < b < a+ 1, the minimizer of &, b),
possibly after a dilation (x) — 7~2u(rXx), satisfies the modified inversion sym-

metry.
X -2
: (W) = X700

8 A Related Variational Problem

In this section we shall consider a related problem that can be solved by using
our method and the results we obtained in the previous sections. EoaO<
(N —2)/2, special cases of the following problem were considered in [22] and
[25]:

For N > 3, we consider the following problem:
(8.1) —div(Ix|"2Vw) + y|x| 2y = x| PPwPt, u>0, inRV,
where

N-2

a
=72

N—2—2a>2

, a<b<a+1, y>—( 5

B 2N

T N-242b-a)’

The solutions inD}2(RN) of this problem are critical points of

fRN |X|_2a|VU|2 + )/|X|_2(1+a)U2dX
(i IXI=PJuP dx) "

PROPOSITIONS.1 The solutions inDX?RN) of (8.1) are in one-to-one corre-
spondence to solutions D} *(RN) of

P

Ea,b,y (U) =

—div(]x|"?Vu) = x| ®PuPt, u=>0, inRV,
where

_ N—-2-2a
a=a+r—VA2+y, b=b4+r-VA24+y, A= —>7>o—.

2
This correspondence is given by

ux) = X V¥ u(x) .

Direct computations verify the proof, which we omit here.

Due to this proposition, we can put equation (8.1) in the same frame of work as
in (1.8), and we can translate all of our results for (1.8) to get corresponding results
for (8.1). We note that even in treenonnegative region, foy sufficiently large
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the minimizer ofE, , ,, () is nonradial. All of our main theorems are adapted in
the obvious way. We leave the statements of these results to the reader.
REMARK 8.2 Proposition 8.1 also holds fof = 1 andN = 2 with a andb in the
corresponding regions.

REMARK 8.3 For0< a < % special cases of (8.1) were considered in [22]
(@=b=0and-S(0,1) <y <0)and[25]@a<b<a+land-S@a+1) <

y <0,a<b<a+1withy >0,and 0< a=bwith0 < y « 1), but only
compactness of minimizing sequences was given.

9 Final Remarks and Questions

We finish the paper with some remarks and related open questions.

First, we have given the best constants on the boundary aftiegative region.

In view of Theorem 1.3, it seems that there are no closed form minimizers. An
interesting question here is, what are the best constants in the interior af the
negative region?

Another question is, in view of Theorem 1.3, what are the optimal parameter
values at which the symmetry breaking exactly occurs, namely, the optimal form
of h(a)?

Our analysis indicates that the radial solutions get more and more unstable as
a — —oo, and this suggests there should be more and more nonradial solutions.
We have studied this in [9]. Some of the results in this paper as well as those of [9]
have been announced in [8].

Finally, an interesting question is related to the cddes 1 andN = 2. With
regard to the Caffarelli-Kohn-Nirenberg inequalities, what are the optimal spaces
for N = 1withb = a+ 3 and forN = 2 withb = a?

After this paper was submitted, M. Willem kindly informed us of his preprint
[27] and another reference [16] that contain related results to our Theorem 1.1(iii)
and 1.2(ii) by using different methods.

Acknowledgment. The authors would like to thank L. Nirenberg for his en-
couragement and pointing out some references in the preparation of the paper.
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