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Abstract

In this paper, we investigate existence of nontrivial periodic solutions to the Hamiltonian system

−J ż = H ′(t, z), z ∈ R
2N . (HS)

Under a general twist condition for the Hamiltonian function in terms of the difference of the Conley–
Zehnder index at the origin and at infinity we establish existence of nontrivial periodic solutions. Compared
with the existing work in the literature, our results do not require the Hamiltonian function to have lineariza-
tion at infinity. Our results allow interactions at infinity between the Hamiltonian and the linear spectra. The
general twist condition raised here seems to resemble more the spirit of Poincaré’s last geometric theorem.
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1. Introduction

This paper is concerned with a classical problem on the existence of periodic solutions of
Hamiltonian systems when a twist condition near the origin and infinity holds for the Hamiltonian
function. More precisely, consider the system

−J ż = H ′(t, z), t ∈ R, z ∈ R
2N, (HS)

where J is the standard symplectic matrix in R
2N , the Hamiltonian function H ∈

C2(R × R
2N,R) is τ -periodic in t for some τ > 0 and satisfies, among other technical con-

ditions, the following

H ′(t, z) = B0(t)z + o
(|z|) as |z| → 0 uniformly in t ∈ [0, τ ], (1.1)

H ′(t, z) = B∞(t)z + o
(|z|) as |z| → ∞ uniformly in t ∈ [0, τ ] (1.2)

for τ -periodic continuous symmetric matrix functions B0(t) and B∞(t). Here and below we
use H ′,H ′′ to denote the first and the second derivatives of H with respect to z ∈ R

2N . Assume
B0 and B∞ are non-degenerate in the sense that the linear systems −J ż = Bi(t)z with i = 0,∞
do not have 1 as a Floquet multiplier. Then the classical results due to Amann and Zehnder,
Conley and Zehnder, Long and Zehnder [4,5,13,26] give the existence of a nontrivial τ periodic
solution to the system if B∞ cannot be continuously deformed to B0 in the set of non-degenerate
continuous loops of τ periodic symmetric matrices. The twisting is referred to the fact that they
stand in different equivalent loop classes.

A quantitative way to measure the twisting is given by the Conley–Zehnder index (or Maslov
index), which was introduced in [19], and developed in [13,26] for the study of Hamiltonian
systems in relation with Morse theory and critical point theory. Let Sp(N,R) be the set of all
2N × 2N symplectic matrices, and let

Γ = {
γ ∈ C

([0, τ ],Sp(N,R)
) ∣∣ γ (0) = I, γ (τ ) has no eigenvalue 1

}
where I denotes the identity matrix in R

2N . By the results of Conley and Zehnder [13] and Long
and Zehnder [26], there is a map j : Γ → Z satisfying that γ1 and γ2 lie in the same component
of Γ if and only if j (γ1) = j (γ2). For non-degenerate B(t), one defines the Conley–Zehnder
index for B , i(B) = k if j (W) = k, where W is the fundamental solution matrix to the linear
system −J ẏ = B(t)y. When B is degenerate, Long [24] extended the concept, and the Conley–
Zehnder index for a τ -periodic continuous symmetric matrix function B(t) is a pair of integers,
denoted by (i(B), ν(B)), where i(B) is defined as lower limit of the indices of non-degenerate
ones, and ν(B) is the dimension of the kernel of W(τ) − I . Thus B(t) is non-degenerate if and
only if ν(B) = 0, that is, the linear system −J ż = B(t)z has only trivial τ periodic solution 0.
We refer to the books of Abbondandolo [2] and Long [25] for a more detailed account of the
concept.

Condition (1.2) is referred in the literature as asymptotically linear for the nonlinearity (or
asymptotically quadratic for the Hamiltonian). In the pioneer work [4] of Amann and Zehnder in
1980, under a twist condition in terms of the Conley–Zehnder indices of B0 and B∞, namely,

∣∣i(B0) − i(B∞)
∣∣ � 1, (1.3)
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the existence of a nontrivial τ periodic solution was proved when B0 and B∞ were assumed to be
constant matrices and non-degenerate. This result was established by Conley and Zehnder [13]
in 1984 for the case where B0 and B∞ are non-degenerate continuous τ periodic symmetric
matrix functions in R

2N for N � 2, and by Long and Zehnder [26] in 1990 for the case N = 1.
It is well known that the twist condition of the form (1.3) is related to the famous Poincaré–
Birkhoff theorem on the existence of fixed points of area preserving homeomorphisms on an
annulus under twist conditions on the opposite sides of the boundary. The twist condition for
Hamiltonian systems is measured by the gap between the Conley–Zehnder index at zero and at
infinity.

Generalizations of this type results to allow B0 and B∞ to be degenerate were given in [1,5,11,
12,18,21,22,28,34–36] and references therein. There are two types of results basically. Among
these works we refer to [12] and references therein for one type of results that allow resonance
at infinity under some additional technical conditions such as Landsmann–Lazer condition, Ra-
binowitz resonant condition, the strong resonant conditions, etc. The twist condition is assumed
in the form i(B0) /∈ [i(B∞), i(B∞) + ν(B∞)] in case B0 is non-degenerate. These technical
assumptions at infinity are crucial to establish compactness for the problem. There have been
a variety of variations on the conditions at infinity, such as those mentioned above (see e.g.,
[11,12,18,21,22,29,32–36] and references therein), some type of asymptotic conditions at infin-
ity are needed in all these results, as far as we know. On the other hand, following a result of Benci
and Fortunato [6] for second order systems, another type of results was given in [1] and [28] for
the first order systems, which allow resonant linearization at infinity without the technical con-
ditions as those mentioned above but require a stronger version of the twist condition, namely
i(B0) /∈ [i(B∞) − 1, i(B∞) + ν(B∞) + 1].

In this paper we consider a more general form of twist condition between the origin and
infinity for the Hamiltonian function and our condition does not require the Hamiltonian to have
a linearization at infinity. Instead of (1.2), we assume that there exists a continuous τ periodic
symmetric matrix function B∞(t) such that for some K > 0

H ′′(t, z) � B∞(t)
(
resp., H ′′(t, z) � B∞(t)

)
, ∀t ∈ [0, τ ], |z| � K, (1.4)

where for two symmetric matrices A and B , A � B means that B −A is semi-positively definite.
Our main result is that if H ′(t, z) is of linear growth in z, and (1.1) and (1.4) hold with B0 and
B∞ being non-degenerate, the system (HS) has a nontrivial τ -periodic solution provided the
following twist condition holds

i(B∞) > i(B0) + 1
(
resp., i(B∞) < i(B0) − 1

)
. (1.5)

This form of twist condition, with the Hessian at zero and infinity twisting toward opposite
directions, seems to be more natural in the spirit of the original formulation of Poincaré’s last
geometric theorem.

The novelty of our result is that we do not need the system to be asymptotically linear at infin-
ity like (1.2) which has been assumed in all works in the literature. Note that a stronger version
of (1.2) would be H ′′(t, z) = B∞(t)+ o(1) as |z| → ∞. Our condition (1.5) requires only a one-
sided comparison between H ′′(t, z) and B∞(t) at infinity. The twisting between the origin and
infinity is reflected in (1.5). Thus our results extend the aforementioned second type of results,
in particular Theorem B in [1], to a wider class of Hamiltonian functions not necessarily having
linearization at infinity. On the other hand, without requiring the usual technical conditions at
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infinity like in [11,12,18,22] our results under the stronger twist condition allow interactions be-
tween the nonlinearity and linear spectrum at infinity. Finally our approach can also be adopted
for obtaining multiplicity results when a certain symmetry is present in the system.

The basic idea of our proof is to modify the original problem so that the modified problems
are non-resonant at infinity and to get control of the solutions for the modified problems so that
they are solutions of the original problem. In spirit the idea was already used in [1,6,28] in the
setting of asymptotically linear problems, though technically our constructions of modifications
are different from those in [1,6,28]. Our approach follows closely to that in [23] for nonlinear
elliptic problems. Due to the strongly indefinite nature of Hamiltonian systems, we need to over-
come some more involved issues. Let us outline our strategy here. We first modify the system
(HS) by modifying the Hamiltonian function to get a family of approximate systems which are
non-degenerate at infinity. Due to the indefinite nature of the problem, we make use of the saddle-
point reduction process as developed by Amann and Zehnder [4], Chang [10], and Long [25];
here we need to carefully make a suitable choice of the reduction setting. For the approximate
systems we make use of Morse theory [10,27] or minimax principle [20,29] to obtain solutions to
the modified systems whose Morse indices can be estimated from the constructions. Finally in a
crucial step we establish the L∞ bound of the solutions constructed for the approximate systems
and therefore obtain solutions to the original system.

This paper is organized as follows. In Section 2, we introduce some preliminaries including
the saddle point reduction, and establish some further estimates that we need in the proofs. In
Section 3, we first give the precise statement of our main results, then we present the proofs of
the results. We conclude the paper with a few remarks in Section 4.

2. Preliminaries

In this section we recall the saddle point reduction procedure for the variational formulation
of the system

−J ż = H ′(t, z). (HS)

The saddle point reduction method was first used by Amann [3], and then by Amann and Zehnder
in their celebrated paper [4] to treat Hamiltonian systems. This was further simplified by Chang
in [10] and recollected by Long in [25]. We first recall the basic materials from the books by
Chang [10] and Long [25]. Then we further develop some estimates which we need in the proof
of the main theorems.

In this section we always assume

(H1) H ∈ C2(R × R
2N,R), and for some τ > 0, it is τ -periodic in t .

Without loss of generality, throughout the paper we assume τ = 2π .
(H2) There exists a constant ĉ > 0 such that∣∣H ′′(t, z)

∣∣ � ĉ, ∀(t, z) ∈ R × R
2N.

It is well known that under (H1) and (H2), weak solutions of (HS) are classical. Thus we
just need to consider the weak solutions. Let S2π = R/(2πZ), L = L2(S2π ,R

2N) and let
E = W 1,2(S2π ,R

2N) be equipped with the usual norm. In space L we define an operator

Az = −J ż,
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then the domain of A is E. The spectrum of the operator A is σ(A) = Z with each eigenvalue
being of multiplicity 2N . The eigenspace of A corresponding to the eigenvalue k ∈ Z is

Ek = exp (ktJ )R2N = (
(coskt)I + (sin kt)J

)
R

2N.

In particular

kerA = E0 = R
2N.

Let

g(z) =
2π∫

0

H
(
t, z(t)

)
dt, z ∈ L.

Then g ∈ C1(L,R) and

g′(z) = H ′(t, z),

g′(z) is Gâteaux differentiable and its G-derivative is

dg′(z)y = H ′′(t, z)y.

Then (H2) implies ∥∥dg′(z)
∥∥
L(L)

� ĉ. (2.1)

Define

f (z) = 1

2
〈Az, z〉L − g(z), z ∈ E.

Under (H1) and (H2), f ∈ C1(E,R), and the following equation

Az = g′(z), z ∈ E, (2.2)

is the Euler equation of the functional f on L, i.e.〈
f ′(z), y

〉
L

= 〈
Az − g′(z), y

〉
L
, ∀y, z ∈ E.

Now in order to solve (2.2), we describe the saddle point reduction procedure as in [4,5,10,
25]. We follow [25] more closely.

Let

P0 : L → E0 = R
2N

be the projection map. Define the operator

A0z = Az + P0z, z ∈ E.
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Then A0 is invertible.
Let ĉ be as in (H2) and choose

β > 2(ĉ + 1), β /∈ Z.

We define the following projections on the space L according to the spectral resolution of A0

P =
β∫

−β

dEλ, P + =
∞∫

β

dEλ, P − =
−β∫

−∞
dEλ,

Q+ =
∞∫

0

dEλ, Q− =
0∫

−∞
dEλ.

Then

L = L+ ⊕ L− ⊕ Z, where Z = PL, L± = P ±L.

Next let

S+ =
∞∫

β

λ− 1
2 dEλ, S− =

−β∫
−∞

(−λ)−
1
2 dEλ, R =

β∫
−β

|λ|− 1
2 dEλ.

Then S±|L± and R|Z are injections. Let

V ± = S±L±, V 0 = RZ.

Define a subspace of L by

V = V + ⊕ V − ⊕ V 0.

Then V is isometric to the Sobolev space W
1
2 ,2(S2π ,R

2N) under the following norm

‖v‖V = (∥∥(
S+)−1

v+∥∥2
L

+ ∥∥(
S−)−1

v−∥∥2
L

+ ∥∥R−1v0
∥∥2

L
+ ‖v‖2

L

) 1
2

where

v = v+ + v− + v0 ∈ V + ⊕ V − ⊕ V 0 = V.

For z = z+ + z− + x ∈ L+ ⊕ L− ⊕ Z = L, we define

g0(z) = g(z) + 1 〈P0z, z〉L

2
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and

f0(z) = 1

2

(∥∥z+∥∥2
L

+ ∥∥Q+x
∥∥2

L
− ∥∥Q−x

∥∥2
L

− ∥∥z−∥∥2
L

) − g0(v),

where v = S+z+ + S−z− + Rx. By the properties of the operators S±, we have

f0(z) = 1

2
〈A0v, v〉L − g0(v) = 1

2
〈Av,v〉L − g(v) = f (v).

The Euler equation of the functional f0 is given by

z± = ±S±g′
0(v),

Q±x = ±Q±Rg′
0(v), (2.3)

where

v = S+z+ + S−z− + Rx.

By a contraction mapping argument, for each x ∈ Z fixed, Eq. (2.3) can be solved uniquely, we
denote the solution by

z± = ξ±(x).

It can be shown that

z± ∈ C1(Z,V ).

Let

z(x) = w(x) + x

where

w(x) = w+(x) + w−(x) = S+ξ+(
R−1x

) + S−ξ−(
R−1x

)
,

then

z ∈ C1(Z,E).

Now define the functional a on Z as

a(x) = f0
(
ξ+(

R−1x
) + ξ−(

R−1x
) + R−1x

)
= 1

2

(∥∥ξ+(
R−1x

)∥∥2
L

+ ∥∥Q+(
R−1x

)∥∥2
L

− ∥∥Q−(
R−1x

)∥∥2
L

− ∥∥ξ−(
R−1x

)∥∥2
L

) − g0
(
z(x)

)
.

Then

a(x) = f
(
z(x)

)
for x ∈ Z.
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The above discussions can be summarized in the following theorem duo to Amann and Zehn-
der [4] and Chang [10] (see also the book by Long [25]).

Theorem 2.1. Assume that H satisfies (H1) and (H2). Then there exist a ∈ C2(Z,R) and an
injection map z ∈ C1(Z,L) such that z : Z → E = domA satisfies the following properties:

(1) The map z has the form z = w(x) + x, where Pw(x) = 0.
(2) The functional a satisfies

a(x) = f
(
z(x)

) = 1

2

〈
Az(x), z(x)

〉
L

− g
(
z(x)

)
,

a′(x) = Ax − Pg′(z(x)
) = Az(x) − g′(z(x)

)
,

a′′(x) = AP − Pdg′(z(x)
)
z′(x) = [

A − dg′(z(x)
)]

z′(x)

and a′ is globally Lipschitz continuous.
(3) x ∈ Z is a critical point of a if and only if z(x) is a solution of Az = g′(z).

We need a further estimate on the map z = z(x). We have

Lemma 2.2. Assume that H satisfies (H1) and (H2) and H ′(t,0) = 0. Then in the setting above

∥∥ξ±(x)
∥∥ � 2

√
β(ĉ + 1)c̃

β − 2(ĉ + 1)
‖x‖, ∀x ∈ Z,

where ĉ is given in (H2) and c̃ = ‖R‖ which is independent of β . Also we have∥∥(
ξ±)′

(x)
∥∥ → 0, as β → ∞.

Proof. Note that

ξ±(x) = ±S±g′
0(v), v = S+ξ+(x) + S−ξ−(x) + Rx.

Note that H ′(t,0) = 0 implies g′(0) = 0. Since

∥∥S±∥∥ � 1√
β

,

we have by (2.1) that

∥∥ξ±(x)
∥∥ �

∥∥S±g′
0(v)

∥∥
� 1√

β

∥∥g′(v) + P0v
∥∥

� ĉ + 1√
β

‖v‖

� ĉ + 1√
(‖ξ+(x)‖√ + ‖ξ−(x)‖√ + c̃‖x‖

)
.

β β β
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Therefore,

∥∥ξ+(x)
∥∥ + ∥∥ξ−(x)

∥∥ � 2
√

β(ĉ + 1)c̃

β − 2(ĉ + 1)
‖x‖.

Next, since

(
ξ±)′

(x) = ±S±dg′
0(v)

(
S+(

ξ+)′
(x) + S−(

ξ−)′
(x) + R

)
,

we have

∥∥(
ξ+)′

(x)
∥∥ + ∥∥(

ξ−)′
(x)

∥∥ � 2
√

β(ĉ + 1)c̃

β − 2(ĉ + 1)
, ∀x ∈ Z. �

Remark 2.3. For w(x) we also have that there is a constant C > 0 dependent of ĉ but independent
of β such that

∥∥w(x)
∥∥ � C√

β
‖x‖, ∥∥w′(x)

∥∥ � C√
β

, ∀x ∈ Z.

For each 2π -periodic continuous symmetric matrix function B(t), one can associate a pair of
integers (i(B), ν(B)) to the linear system

−J ẏ = B(t)y, y ∈ R
N. (2.4)

This pair of integers (i(B), ν(B)) is called the Conley–Zehnder index of B(t). Note that
ν(B) = 0 if and only if (2.4) has only the trivial 2π periodic solution.

Now assume z∗ = z∗(t) is a solution of (HS). Then by the discussions above, z∗ = z∗(x∗) for
some x∗ ∈ Z, and x∗ is a critical point of a(x) in Z. Let

2d = dimZ.

Denote by m−(x∗) and m0(x∗) the Morse index and nullity of x∗ as a critical point of a(x) in Z.
Let (i(z∗), ν(z∗)) be the Conley–Zehnder index for

B(t) := H ′′(t, z∗(t)
)
.

We also call (i(z∗), ν(z∗)) the Conley–Zehnder index of z∗. We shall need the following result
from [25].

Theorem 2.4. Under the assumptions (H1) and (H2), one has

m−(
x∗) = i

(
z∗) + d, m0(x∗) = ν

(
z∗).
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3. Main results and proofs

In this section we state the main results in this paper and then give the proofs. We further
make the following assumptions.

(H ∗
2 ) There exists C1 > 0 such that for all (t, z), |H ′(t, z)| � C1(1 + |z|).

(H3) H ′(t,0) = 0 and denote the Conley–Zehnder index (i(0), ν(0)) of z = 0 by (i0, ν0) and
assume ν0 = 0.

(H±
4 ) There exists a 2π periodic symmetric matrix function B∞(t) such that for some K > 0,

±H ′′(t, z) � ±B∞(t), for all t ∈ S2π , |z| � K.

Denote by (i∞, ν∞) the Conley–Zehnder index of B∞ and assume ν∞ = 0.

Our results read as follows.

Theorem 3.1. Assume (H1), (H ∗
2 ), (H3) and (H+

4 ) (resp. (H−
4 )). If i∞ > i0 + 1 (resp. i∞ <

i0 − 1), then (HS) has at least one nontrivial 2π periodic solution.

Theorem 3.2. Assume (H1), (H ∗
2 ), (H3) and (H+

4 ) (resp. (H−
4 )). Assume in addition that H

is even in z. If i∞ > i0 + 1 (resp. i∞ < i0 − 1), then (HS) has at least |i∞ − i0| − 1 pairs of
nontrivial 2π periodic solutions.

We remark that the same results hold for the resonant case ν∞ 
= 0 if we assume the condition
i∞ > i0 +1 (resp., i∞ +ν∞ < i0 −1). This is consistent with the condition used in [1] for asymp-
totically linear systems. Thus Theorem 3.1 implies Theorem B in [1]. In our setting in (H±

4 ) by
considering B∞(t) ∓ εI instead of B∞(t) for ε > 0 small the resonant case at infinity can be
reduced to non-resonant case. Thus we only give the proof for the non-resonant case here.

The outline of our proof is as follows.

(i) Consider a sequence of modified problems

−J ż = H ′
k(t, z). (HS)k

Perform the saddle point reduction as done in Section 2 for (HS)k so that solutions of (HS)k
correspond to critical points of the functional ak,βk

∈ C2(Zβk
,R). This is done by choosing

the parameter βk suitably so that the estimates in steps (ii) and (iii) can be carried out.
(ii) For each k ∈ N, use the finitely dimensional functional ak,βk

to construct a nontrivial solu-
tion zk whose Morse index can be controlled.

(iii) Establish L∞ estimate for zk so that for k large, zk is a nontrivial solution of the original
problem.

The cases of (H+
4 ) and (H−

4 ) are similar. In fact the case (H−
4 ) follows from the case (H+

4 )

applied to the Hamiltonian −H(−t, z). We assume (H+
4 ) from now on. We first construct the

approximate Hamiltonian function sequences Hk .
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Lemma 3.3. Assume (H1), (H ∗
2 ) and (H+

4 ). Then there exists a sequence of Hamiltonian func-
tions

Hk(t, z) ∈ C2(
R × R

2N,R
)
, k ∈ N,

satisfying the following properties:

(a) there exists an increasing sequence of real numbers Rk → ∞ (k → ∞) such that

Hk(t, z) ≡ H(t, z), ∀|z| � Rk, t ∈ S2π ;

(b) for each k = 1,2,3, . . . ,

H ′′
k (t, z) � B∞(t) ∀|z| � K, t ∈ S2π ;

(c) there exist C′
1 > 0 (independent of k) and ĉk > 0 such that for all z ∈ R

2N, t ∈ S2π , and
k ∈ N

∣∣H ′
k(t, z)

∣∣ � C′
1

(
1 + |z|), ∣∣H ′′

k (t, z)
∣∣ � ĉk;

(d) there is γ > 0, γ /∈ Z, independent of k such that for each k ∈ N fixed,

Hk(t, z) ∼ γ

2
|z|2, H ′

k(t, z) ∼ γ z, H ′′
k (t, z) ∼ γ I, as |z| → ∞.

Proof. The result is from our work [23]; here we just describe the constructions of such a se-
quence of Hamiltonian functions Hk for convenience.

Let K be as in (H4). Choose a sequence {Rk} of positive numbers such that

K < R1 < R2 < · · · < Rk < · · · → ∞, k → ∞.

For each k ∈ N, define φk : [Rk,2Rk] → R as

φk(s) = 2

9R3
k

(s − Rk)
3 − 1

9R4
k

(s − Rk)
4, s ∈ [Rk,2Rk].

Then define the function

ψk(s) = 1 − 128R2
k

9(12R2
k + s2)

.

Now for each k ∈ N, define the function ηk : [0,∞) → [0,1) by

ηk(s) =
{0, 0 � s � Rk,

φk(s), Rk � s � 2Rk,
ψk(s), 2Rk � s < ∞.
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Then the desired Hamiltonian functions Hk are defined by

Hk(t, z) = (
1 − ηk

(|z|))H(t, z) + ηk(|z|)γ
2

|z|2, k ∈ N,

which satisfy the properties (a)–(d). The verification of these properties is left to the interested
readers. �

Now we give the proof of Theorem 3.1.

Proof of Theorem 3.1. We consider the case of (H+
4 ) only. We break the proof into three parts

as outlined before.
Part 1. For each k ∈ N, we consider the modified problem

−J ż = H ′
k(t, z), (HS)k

where Hk is given in Lemma 3.3. By the construction, we see that each Hk satisfies (H1)

and (H2) with ĉ being replaced with ĉk from Lemma 3.3. Therefore we can perform on (HS)k
the saddle point reduction procedure as described in Section 2. We will choose the number
β = βk large according to k, which is used in the projection for the reductions. First we choose
βk > 4(ĉk + 1) and βk /∈ Z as in Section 2. Thus for each k and such a βk fixed, by Theorem 2.1,
we have a functional

ak,βk
(x), x ∈ Z = Zβk

,

whose critical points give rise to solutions of (HS)k . By Theorem 2.1, the functional ak,βk
∈

C2(Zβk
,R). And there exists a map zk,βk

∈ C1(Zβk
,L), zk,βk

(x) = wk,βk
(x) + x with

wk,βk
(x) ∈ E, such that x is a critical point of ak,βk

if and only if zk,βk
(x) is a solution of

(HS)k . Furthermore for some Ck > 0 only dependent of ĉk but not dependent of βk , it holds

∥∥w′
k,βk

(x)
∥∥ � Ck√

βk

, ∀x ∈ Zβk
.

Using the same decomposition of L, we can also perform the saddle point reduction procedure
on the linear system

−J ż = B∞(t)z

which has only trivial solution z = 0 with the Conley–Zehnder index (i∞,0). Then we have a
functional a∞,βk

∈ C2(Zβk
,R), an injection map z∞,βk

∈ C1(Zβk
,L), z∞,βk

(x) = w∞,βk
(x)+x

with w∞,βk
(x) ∈ E, and for some C > 0 independent of k, such that

∥∥w′∞,βk
(x)

∥∥ � C√
βk

, ∀x ∈ Zβk
.

Also we have for ϕ ∈ Zβk
,

〈
a′′ (0)ϕ,ϕ

〉 = 〈(
A − B∞(t)

)(
w′ (0) + id

)
ϕ,ϕ

〉
.
∞,βk ∞,βk
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Denote by Z−
βk

the negative eigenspace of a′′∞,βk
(0) in Zβk

. Now we claim that there exist r0 > 0,
β0 > 0 such that for all βk > β0 with βk /∈ N,

〈
a′′∞,βk

(0)ϕ,ϕ
〉
� −r0‖ϕ‖2, ∀ϕ ∈ Z−

βk
.

By contradiction, if the claim does not hold, we would have the sequences

ϕn ∈ Z−
βn

, ‖ϕn‖ = 1, βn → ∞ as n → ∞

such that

〈(
A − B∞(t)

(
w′∞,βn

(0) + id
))

ϕn,ϕn

〉 → 0 as n → ∞.

Without loss of generality, we may assume

Aϕn − PnB∞(t)
(
w′∞,βn

(0) + id
)
ϕn = αnϕn, (3.1)

where

Pn = Pβn :=
βn∫

−βn

dEλ, αn → 0 as n → ∞.

Take a /∈ Z. Then the operator A + a is invertible and (A + a)−1 is compact. From (3.1) we see
that

ϕn = (A + a)−1(PnB∞(t)ϕn + PnB∞(t)w′∞,βn
(0)ϕn + (αn + a)ϕn

)
. (3.2)

Since {PnB∞(t)ϕn + PnB∞(t)w′∞,βn
(0)ϕn + (αn + a)ϕn} is bounded, we see that {ϕn} has a

convergent subsequence which is still denoted by {ϕn}. Let

ϕn → ϕ∗ as n → ∞.

Then ‖ϕ∗‖ = 1. Passing to a limit in (3.2) and using

PnB∞(t)ϕn → B∞(t)ϕ∗, PnB∞(t)w′∞,βn
(0)ϕn → 0,

we obtain

Aϕ∗ − B∞(t)ϕ∗ = 0,

which is a contradiction since ν∞ = 0. Then we see that there exists β ′
0 � β0 such that for all

βk > β ′
0 with βk /∈ Z and all ϕ ∈ Z−

βk
,

〈(
A − B∞(t)

)
ϕ,ϕ

〉
� − r0 ‖ϕ‖2.
2
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At this time we choose βk large such that it holds ‖w′
k,βk

(x)‖ � r0/4ĉk for x ∈ Zβk
. For this we

may assume ĉk c̃ > r0 and we can choose βk > (
16ĉk(ĉk+1)c̃

r0
)2. From now on we choose βk such

that

βk > max

{
4(ĉk + 1), β ′

0,

(
16ĉk(ĉk + 1)c̃

r0

)2}
, βk /∈ Z.

Part 2. Note that x = 0 is a critical point of ak,βk
(x). By Theorem 2.4, the Morse index of 0

for ak,βk
is i0 + dβk

, where

2dβk
= dimZβk

.

By the result of Long [25], the Poincaré polynomial for the level sets of ak,βk
is tdβk

+iγ , here we
use (iγ , νγ ) to denote the Conley–Zehnder index of 0 for the system

−J ẏ = H ′′
γ (0)y,

where

Hγ (z) = γ /2|z|2

and γ is given in Lemma 3.3 so that νγ = 0. By construction, we have that

iγ � i∞.

Now by Morse inequality, ak,βk
has a nontrivial critical point xk with its Morse index satisfying

m−(xk) � dβk
+ i0 + 1.

By Theorem 2.1(3),

zk = zk,βk
(xk) = w+

k,βk
(xk) + w−

k,βk
(xk) + xk

is a solution of the modified system (HS)k .
Part 3. Finally we show that there exists C > 0 independent of k such that

‖zk‖L∞ � C

and therefore zk is a solution of the original problem (HS) for k large. To this end, we use an
indirect argument. Assume

‖zk‖L∞ → ∞ as k → ∞.

As zk solves (HS)k and the gradients of the Hamiltonian functions H ′
k have a uniform growth

control, we see that

‖zk‖L∞ → ∞ ⇐⇒ ‖zk‖V → ∞ as k → ∞.
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Now multiplying the system (HS)k by z+
k − z−

k where z±
k = Q±zk , we get

∥∥z+
k

∥∥2
V

+ ∥∥z−
k

∥∥2
V

� C‖zk‖2
L2 .

Set

yk = zk

‖zk‖V

.

By the compact embedding W
1
2 ,2(S2π ,R

2N) ↪→ Ls(S2π ,R
2N) for s � 1, we have for some

y ∈ V ,

yk ⇀ y in V, yk → y in L, and y 
= 0.

Note that yk satisfies

−J ẏk = H ′
k(t, zk)

‖zk‖V

=: Gk

(
t, yk(t)

)
.

By (H ∗
2 ), (H3) and Lemma 3.3 there is C′

1 > 0 such that |H ′
k(t, z)| � C′

1|z|. Thus we have for
all k, |Gk(t, y)| � C′

1|y|. By regularity results (e.g., [8]), {yk} is bounded in Cα for some α > 0.
Therefore up to a subsequence we may assume yk converges in uniform norm to y. We claim
y(t) 
= 0 for all t ∈ S2π . We show this by showing if y(t0) = 0 for some t0 then y(t) = 0 for all t .
In fact, since

yk(t) = yk(t0) +
t∫

t0

JGk

(
s, yk(s)

)
ds,

we have maxt∈I0 |yk(t)| � 2|yk(t0)|, where I0 = {t | |t − t0| � 1
2C′

1
}. Sending k → ∞ we have

y(t) = 0 for t ∈ I0. Repeating this gives the claim.
Now for k large we have mint∈[0,2π] |zk(t)| � K . Note that

∣∣∣∣∣
2π∫

0

H ′′
k

(
t, zk,βk

(xk)
)
w′

k,βk
(xk)ϕϕ dt

∣∣∣∣∣ � r0

4
‖ϕ‖2, ∀ϕ ∈ Zβk

.

For any ϕ ∈ Zβk
,

〈
a′′
k,βk

(xk)ϕ,ϕ
〉 = 〈(

A − H ′′
k

(
t, zk,βk

(xk)
))(

w′
k,βk

(xk) + id
)
ϕ,ϕ

〉

= 〈(
A − H ′′

k

(
t, zk,βk

(xk)
))

ϕ,ϕ
〉 −

2π∫
0

H ′′
k

(
t, zk,βk

(xk)
)
w′

k,βk
(xk)ϕϕ dt.

Then when k is large enough for any ϕ ∈ Z−

βk
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〈
a′′
k,βk

(xk)ϕ,ϕ
〉
�

〈(
A − B∞(t)

)
ϕ,ϕ

〉 + r0

4
‖ϕ‖2

� − r0

4
‖ϕ‖2.

This gives that the Morse index m−(xk) of xk for the functional ak,βk
satisfies

m−(xk) � dimZ−
βk

.

Since

dimZ−
βk

= dβk
+ i∞,

we see that

m−(xk) � dβk
+ i∞,

which contradicts to

m−(xk) � dβk
+ i0 + 1 < dβk

+ i∞.

Therefore, solutions zk = zk,βk
(xk) are uniformly bounded in L∞ and are solutions of (HS) for k

large. The proof of Theorem 3.1 is finished. �
The proof of Theorem 3.2 is similar to the above. The difference is in the second part, instead

of Morse theory we make use of minimax arguments for multiplicity of critical points in the
presence of symmetry. We need to control Morse indices of critical points obtained for the even
functional ak,β . We state two results of this type from Ghoussoub [20] and Chang [10] (see also
discussions about these results in [23]).

Let X be a Hilbert space and assume φ ∈ C2(X,R) is an even functional, satisfies the (PS)
condition, and φ(0) = 0. Let K be the set of critical points of φ. Denote Sa = {u ∈ X | ‖u‖ = a}.

Lemma 3.4. (See [20, Corollary 10.19].) Assume Y and Z are subspaces of X satisfying dimY =
j > k = codimZ. If there exist R > r > 0 and α > 0 such that

infφ(Sr ∩ Z) � α, supφ(SR ∩ Y) � 0,

then φ has j − k pairs of nontrivial critical points {±u1,±u2, . . . ,±uj−k} so that μ(ui) � k + i

for i = 1,2, . . . , j − k.

Lemma 3.5. (See [10, Corollary II 4.1].) Assume Y and Z are subspaces of X satisfying dimY =
j > k = codimZ. If there exist r > 0 and α > 0 such that

infφ(Z) > −∞, supφ(Sr ∩ Y) � −α,

then φ has j − k pairs of nontrivial critical points {±u1,±u2, . . . ,±uj−k} so that μ(ui) +
ν(ui) � k + i − 1 for i = 1,2, . . . , j − k.
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For the proof of Theorem 3.2 we follow the proof of Theorem 3.1 closely. Part 1 is the same.
In Part 2 we use the above two lemmas to claim multiplicity of nontrivial critical points of ak,β

(at least |i∞ − i0| pairs) whose Morse indices are suitably controlled. In Part 3, we follow the
same arguments to conclude that at least |i∞ − i0| − 1 pairs of these solutions are uniformly
bounded in k and therefore they are solutions of the original systems for k large.

4. Further results and remarks

When the Hamiltonian function H is independent of t , i.e., for autonomous systems, the
existence results may give constant solutions, i.e., equilibrium points of the system. There are
standard conditions which assure that the solutions obtained are non-constant solutions. On the
other hand, for autonomous systems there is a natural S1 group action in the space and the vari-
ational formulations are invariant under the group action. This can be used to obtain multiplicity
results (as in the case of the Hamiltonian being even in z in Section 3). Our methods can be
combined with the existing techniques to extend these multiplicity results to the more general
situations we consider in this paper. We state one such a result below.

Theorem 4.1. Assume (H1), (H ∗
2 ), (H3) and (H+

4 ) (resp. (H−
4 )). Assume that H is independent

of t and strictly convex in z. If i∞ > i0 + 1 (resp. i∞ < i0 − 1), then (HS) has at least 1
2 |i∞ −

i0| − 1 non-constant geometrically different 2π periodic solutions.

Here we say two solutions are geometrically different if one is not obtained by time re-scaling
of the other.

Remark 4.2. We may impose additional conditions to guarantee the solutions obtained have min-
imal period 2π . The existence of periodic solutions with prescribed periods has been intensively
studied in the last thirty years. Since the celebrated work of Rabinowitz [30] variational methods
have been used to deal with existence of periodic solutions (see for instance [1,4–7,9,11–18,21,
22,24,26,34–36], monographs and survey papers [2,10,20,25,27,31–33] and references therein).
There have been many works giving conditions to assure existence of solutions with a prescribed
minimal period such as [14]. The conditions and techniques used to establish these results can be
combined with our methods to obtain results for minimal periods in the situations we consider
here.

Remark 4.3. As was discussed and demonstrated in [4,5,13] the twist condition (1.3) (together
with (1.1), (1.2)) is related to the famous Poincaré–Birkhoff theorem which assures the existence
of two fixed points for any area preserving homeomorphisms f on an annulus that satisfy a
boundary twist condition. This boundary twist condition states that f advances points on the
outer edge of the annulus positively and points on the inner edge negatively. Thus the map twists
on the inner and outer edges in opposite direction. Results on existence of periodic solutions for
Hamiltonian systems under twist conditions are regarded as higher dimensional generalizations
of the Poincaré–Birkhoff theorem. In some sense the twist condition we proposed here, i.e., one-
sided condition (1.5) (together with (1.1) and (1.4)), resembles more naturally this spirit. On
the other hand, we need a stronger twisting in that i∞ > i0 + 1 (or i∞ < i0 − 1). It would be
interesting to see whether this is necessary.
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