Stat 1040

Final Exam Review Problems

1. In the game of chess, the first few moves play a very important role in determining the final outcome. Five different opening strategies are highly favored by chess experts. To determine whether one or more of these strategies is most preferred by grad masters in international competition, a random sample of 100 grand masters is taken, and each is asked which of the strategies he or she would prefer to employ. A summary of their responses is given below:

Strategy	A	В	C	D	E
Observed Frequency	17	27	22	15	19
Expected	20	20	20	20	20

Test the hypothesis that there is no preference between these strategies by grand masters in international competition.

Null! no preference; just chance variation

$$\chi^{2}$$
 text, of = 4

 χ^{2} = sum of (Strenved - expected)

= $\frac{(17-20)^{2}}{20} + \frac{(27-20)^{2}}{20} + \frac{(22-30)^{2}}{20} + \frac{(15-30)^{2}}{20} + \frac{(1920)^{2}}{20}$

= $\frac{4.4}{20}$

P-value! .35 or 35%

Don't reject, could be just chance.

2. Many scientists believe that alcoholism is linked to social isolation. One measure of social isolation is marital status, i.e., whether a person is married or not. To test the notion that alcoholics are socially isolated, 280 adults were randomly selected and each was classified as a diagnosed alcoholic, undiagnosed alcoholic, or nonalcoholic and categorized according to his or her marital status. A summary of the responses is shown in the table. Can you conclude that there is a relationship between the marital status and alcoholic classifications?

e t	Diagnosed	Undiagnosed	Nonalcoholic	
Married	21 (33)	37 (41)	58 (42)	116
Not Married	59 (47)	63 (59)	42 (58)	164
	80	100	100	280

Null: variables are independent χ^2 test for independence; df = (2-1)(3-1) = 2Expected frequences

Married & Diagnosed: $\frac{80}{280} \times 116 = 33$ Married & Undiagnosed: $\frac{100}{280} \times 116 = 41$ $\chi^2 = (21-33)^2 + (37-41)^4 + (55-42)^2 + (59-47)^2 + (63-59)^2 + (40-58)^3$ = 14.88; ρ value = 0006 Reject null

- 3. A study reported in the New England Journal of Medicine on January 20, 2010 concerns a new treatment for *relapsing-remitting multiple sclerosis* (MS). More than 1,000 subjects participated in the study with about half being randomly assigned to the treatment group and the remainder to the control group. Subjects in the treatment group received daily doses of the drug *fingolimod*; those in the control group received a placebo. At the end of the trial the incidence of relapsing was about 57% lower in the treatment group than in the control group.
 - a. What kind of a study is this? Random 12ed, con trilled, blind
 - b. What is a placebo, and what does the presence of a placebo in this study tell us about the study? A placebo resembles the treatment to is neutral. The subjects don't know which group.

c. Why is randomization important? How does it affect your conclusions with regards to the results of a study?

Rundomiention eliminates bias, the Tarage 15 like the Larays as much as possible. Any differences will be a result of treatment.

- 4. I took measurements of my diastolic blood pressure each day for a week. The values I obtained were: 102, 95, 108, 103, 92, 97, and 117.
 - a) Compute the average and median of these values and compare them. Median = 102, AV = 102

b) Compute the SD of the 7 measurements. $\frac{100 + 19 + 25 + 1 + 36 + 325}{100 + 19 + 25 + 1 + 36 + 325} = 7.89$

- c) My wife also measured her diastolic blood pressure once a day for a week. Her measurements averaged 64.3 with an SD of 8.2. If we combined our two sets of measurements, the SD of the combined group would be (circle one): about 8.2, less than 8.2, of quite a bit more than 8.2
- 5. Data were obtained from the Current Population Survey on the educational levels of 250 persons living in California and aged between 25 and 55 years of age. In this study, educational level was defined as years of school (including college) completed. The table below summarizes the data (left-endpoint convention). Draw the histogram. $h = \frac{1}{2} \frac{1}$

				Height of
Educational	Number of	Percent of	Width of	Histogram
level (years)	Persons	Persons	Class Interval	Bar
0 - 8 years	25	10	8	1.25
8 - 12 years	25	10	4	215
12 - 16 years	120	48	4	12
16 - 18 years	50	20	એ	10
18 - 24 years	30	12	6	2
Total	250			

agu (yens)

- 6. Many universities (including USU) require students to take the *Graduate Records Examination* (*GRE*) before being admitted to graduate school. The *Verbal GRE* is measured on a scale that runs from 200 to 800 points. Over the last 4 years the average Verbal GRE score was 460, the standard deviation was 120, and the histogram of Verbal GRE scores looked like the normal curve.
 - a. Approximately what percentage of students got 670 or higher on the Verbal GRE?

b. The School of Graduate Studies at USU requires students to score above the 40th percentile on the Verbal GRE. What is the score that represents the 40th percentile?

$$\frac{10\%}{10\%} = \frac{40\%}{2} = 20\%$$

$$\frac{2}{2} \approx .53$$

$$\frac{5000 - 460}{120} = .53$$

$$5000 = (120)(.53) + 460$$

- 7. Systolic and diastolic blood pressure measurements tend to be quite highly correlated. For a sample of men aged 20—29 the following summary information was obtained:
- X Average systolic blood pressure = 120 SD = 12 r = 0.5Y Average diastolic blood pressure = 85 SD = 10

The scatter plot for these data was football shaped. Predict the average diastolic blood pressure for all the men whose systolic blood pressure was 135. Predict the diastolic blood pressure for a randomly chosen man whose blood pressure was 135.

Regression restinate

1. independent variable is systolic lap

2. 135

3: $\frac{135-120}{12} = 1.25$ (standard units)

4. multiply by r (8)(1.25) = 1

5. multiply by 5Dy $10 \times 1 = 10$ 6. add AVy 85 + 10 = |95|

8. In a study, reading comprehension is tested for a large group of third grade students, once at the beginning of the school year and once at the end of the school year. During the school year, the students work on reading comprehension skills. The following results were obtained. The scatter plot for these data was football shaped.

X Beginning of year
$$AV = 75$$

$$SD = 15$$

End of year
$$AV = 80$$

$$SD = 17$$
, $r = 0.6$

Find the equation of the regression line for predicting the end-of-year score from the beginning-of-year score.

$$y-y_{1} = m(x-x_{1})$$

$$y-80 = 168(x-75)$$

$$y = 168(x-75)$$

For those students who scored 65 on the beginning-of-year test, what percentage scored 75 or higher on the end-of-year test?

New AV = regression estimate = (.68)65+29
$$\approx [73.2]$$

New 50 15 r.m.s. error = $\sqrt{1-r^2}$ x.50y
= $(.8)(17) = [13.6]$ Al.13) = 10%
 $\frac{75-73.2}{13.6} = .13$ $\frac{11}{13.6}$ $\frac{11}{13.6}$ $\frac{11}{13.6}$ $\frac{11}{13.6}$

- 9. For each state, a student finds data on the average amount of tax money spent per student and average student performance on a standardized test. The correlation coefficient is 0.7. This value is (choose one)
- (a) An accurate measure of the association between these two variables.
- (b) Misleadingly high
- (c) Misleadingly low.

Ecological correlation!

- a) How many possible outcomes are there?
- b) What is the chance that all three dice show numbers that are 3 or higher? $\frac{7}{10} \times \frac{7}{10} \times \frac{7}{10}$
- c) What is the chance that *none* of the dice shows numbers that are 3 or higher? $\frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}$
- d) What is the chance that at least one of the dice shows a number 3 or higher?

11. A deck of cards has four suits (diamonds, hearts, clubs, and spades) with 13 cards in each suit: 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king, and ace. I shuffle the deck of cards thoroughly so that the cards are in a completely random order. Then I draw two cards from the deck without replacement.

- a) What is the chance that the first card is a diamond? 13
- b) What is the chance that the second card is a diamond given that the first card is a diamond?
- c) Are the events {the first card is a diamond} and {the second card is a diamond} (i) independent (ii) mutually exclusive? Circle one options and briefly explain your answer?
- d) Are the events {the first card is a diamond} and {the first card is a club} (i) independent (ii) mutually exclusive (iii) neither independent nor mutually exclusive? Circle one option and briefly explain your answer?

Suppose I roll a D-10 die 100 times.	
a) Construct a box model for this experiment. $[0,1,2,3,4,5,6,7,8,9]$)r
100 - 100 -	¥.
b) Compute the expected value (EV) and the SE for the sum of the 100 rolls of the D-10. EV for sum = $Roc AV \times (100) = (4.5)(100) = 450$	
c) Construct a box model for counting the number of times the number 0 turns up. 2877	
1 9 05, 1 Drew 100 times + consider	
the sum of draws.	
d) Compute the expected value (EV) and the SE for the <i>number of times</i> 0 turns up in the 100 rolls of the D-10.	
EV for sum = Box AV x (100) = $\frac{1}{10}$ x $100 = 10$	
SE for sum = Ber51) X V100	
= Vto x 8 x 10 = 3 x 10 = 3	
13. Gamers often use a 10-sided dice called a D-10 which has sides labeled 0, 1, 2,, 9.	
Suppose I roll a D-10 die 100 times. A(1.74)	
a) Compute the chance that the <i>sum of the draws</i> is more than 500.	
Normal 2 500-450 = 1.74 ////	ewee A
28.7	1
A(1.74) 2 927 (490)	
b) What is the chance that the <i>number of times</i> 0 <i>turns up</i> is between 5 and 15?	
5-10	
$\frac{3-10}{3} = -1.66, \frac{15-10}{3} = +1.66$	
A(1.66) 2 90%	

12. Gamers often use a 10-sided dice called a D-10 which has sides labeled 0, 1, 2, ..., 9.

Box AV = 3
[-2, -1, 0, 1, 5] $Box 5D = 2.42$
The sum of the positive numbers will be around 60 , give or take 24 or so.
EV for sum = 3 x 100 = 60 SE for sum = Box 51) x V100 = (2.42) V100 = 24.2
15. A roulette wheel has 38 slots numbered 0, 00, 1, 2, 3,, 36. All 38 outcomes are equally likely. The <i>Topline</i> bet in roulette is to a bet on the numbers 0, 00, 1, 2, and 3. If you bet \$1 on
the Topline and any one of the five numbers turns up you win \$6; otherwise you lose your \$1.
Chance of country is
a. Construct a box model for the total amount I win over the 380 games. 15 B61s 33 ETIS Draw 380 4 mes with
15 [BGs, 33 ETS] > Drew 380 times with replacement + consider
sum Adraws.
b. What is the chance that I don't lose money over these 380 games? That is, what is the chance the <i>sum</i> of the amounts I win or lose over the 380 games is greater than or equal
to 10? Bux AV = -3, 51/= -3, 380
$Box 5D = 15-(-1)\sqrt{\frac{5}{38}}, \frac{33}{38} = 2.03 = -30$ $A(.75)$
$5E = (2.03)\sqrt{380} = 39.6$ $\frac{0 - (-30)}{39.6} = .75$
c. Now construct a box model that counts the number of times I win in the 380 games. 5-15, 33-05 Drun 380 + consider sum.
BN AV= 38, BN 5D= 15.33 = .34
EV bor sum = $\frac{1}{30} \times 380 = 50$, SE for sum = $(.34)\sqrt{380}$
d. What is the chance I win 15% or more of the games? = 6.63
57-50 = 1.05 ALI.05) 271% (See bon %) & EV br 10 & & SE bon %)
6.63 ED 00 00 8
(1111 (145 %) SE bon 10
-1.05

14. One hundred draws will be made at random with replacement from the box:

	16. The population of Utah is estimated to be about 2,843,000 and the population of California is
	estimated to be about 36,962,000 which is about 13 times the population of Utah. The Current
	Population Survey (CPS) is supposed to measure the unemployment rates in all 50 states with
	equal accuracy. How large should the CPS sample be for California compared to the sample for
	Utah? Briefly explain your answer. The sample 5122 should be about
	The summe. Accuracy is determined by the size of sumple (sample size are both small compared to populations)
	(sample size are both small compared to populations)
	17. I take a simple random sample of 300 persons aged 25 and over in Cache Valley and I find
	that 75 of them have 4-year ("bachelors") college degrees. Construct a 95% confidence interval
	for the percentage of persons aged 25 and older in Cache Valley that has a 4-year college degree
	[? 15,?05] Draw 300 + consider EV for sample ?0 =
	my to day and sepulation of
5 110	no
מייע	
OV S	$5E \text{ for 90 /s} = \frac{15 \text{ ov 5D} \times \sqrt{300} \times 1009}{300} \times \sqrt{(25)(.75)} \sqrt{300} \times 1009$
= 25%	300
·	300
	25% ± 2 (25%) (25% ± 5%)
	A STATE OF THE PROPERTY OF THE

18. Modern laser altimeters are amazingly accurate and can measure the heights of mountains to accuracies within inches. Fifty independent measurements are made of the height of a famous mountain (you can guess which one!). The average of the measurements is 348,144 inches and the SD is 99 inches. Compute a 95% confidence interval for the true height of the mountain (at the time the measurements were made). Did you have to assume the measurements followed the normal curve? *Briefly* explain your answer.

measurements of Draw 50 + consider the measurements of draws.

EV for AV of draws = Box AV

SE for AV of draws = $\frac{80 \times 10}{50} \times \frac{99 \sqrt{50}}{50} = 14$ 348,144 $\pm 2(14)$

348,144" ± 28")

The massnemals don't have to follow the normal work when not be too august.

finds the average time spent working at after school jobs is 13.1 hours, with an SD of 11.5 hours. The national average is 10.7 hours. Assuming that the hours worked follow the normal curve, test to see whether the inner-city high school students work longer, on average, than those in the nation as a whole.

Nours worked I week Private 13 4 consider AV B draws

Null: Box AV = 10.7 hrs., Alt: Box AV > 10.7, t-testAt = 14

EV for AV J draws = 10.7

SE for AV J draws = $\frac{Box}{15}$ $\frac{SD}{15}$ $\frac{SD}{15$

19. A high school teacher working at an inner-city high school is concerned about the time

students spend working a after school jobs. She randomly selects 15 of her school's students and

20. Scores on the Verbal Graduate Record Examination Test were recorded. For 68 randomly selected women from a given population, the average score was 538.82 with an SD of 114.16. For 86 randomly selected men from the same population, the average score was 525.23 with and SD of 97.23. Test to see if the population average of the women is higher than that of the men for population. State the Null and Alternate Hypotheses and clearly state your conclusion.

Women of the scores of Draw 86 to consider AV consider AV from Momen of Sheets. Men of Sheets

Null: AV of women = AV of men; Alternate: AV of women > AV of men

Test statistic 13 the difference in AV of sheets of follows \pm -curve.

SE for AV of men = $\frac{80\times50}{68}$ $\frac{114.16.008}{68}$ = 13.84SE for AV of men = $\frac{80\times50.086}{68}$ $\frac{197.33.086}{86}$ = 10.48SE for diff = $\sqrt{(13.84)^2+(10.48)^2}$ = 17.36 $\sqrt{1111}$ $\sqrt{1111}$