GENERAL ADDITION RULE

Outcome Space

n equally likely outcomes

Probability of
$$A = \frac{i+j}{n}$$
 Probability of $B = \frac{j+k}{n}$

Probability of A and B = $\frac{j}{n}$

Probability of
$$A$$
 or $B = \frac{i+j+k}{n} = \frac{i+j}{n} + \frac{j+k}{n} - \frac{j}{n}$

Probability of A or B = Probability of A + Probability of B - Probability of A and B

FUNDAMENTAL COUNTING PRINCIPLE:

If event A can occur in m different ways and, after event A has occurred, event B can occur in n different ways, then there are m · n possible ways for both events A and B to occur.

standard issure (1 vorsion)

1 etter - number - number - number - hetter - hetter - hetter (26) (10) (10) (26) (26)

10 . 10 . 10 . 26 26 26

numbers letters

Stat 1040

1. For a class of size 25, how many ways can you select a president, vice president, and secretary?
2. For a class of size 25, how many ways can you select a committee of three students?
3. Given n objects, how many ways can you select k of them?
4. Given 13 different letters, how many ways can you select 5 of them and arrange them in order?
5. What is the chance of winning the lottery?
6. Deron Williams makes 80 % of his free throws. What is the chance that he will

make exactly 3 out of 5 free throws? 12 or more out of 15?

Repeated Trials

1. From a class of 6 students,	, how	many	ways	can	you	selec	t a
committee of size three?			•		•		

2. From a class of 15 students, how many ways can you select a committee of size three?

3. How many ways can you fill in the blanks __ _ _ with exactly 3 H's and 2 T's?

4. Find the probability of getting exactly 3 heads in five tosses of a fair coin.

Repeated Trials: Suppose we have n independent trials, and the probability that event E occurs in any given trial is p. Then the probability that E will occur exactly k times is

$$\frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

5. Find the probability of getting exactly 3 heads in five tosses of a biased coin where the probability of heads is 1/3.

6. A multiple-choice test has 10 questions, each with four choices. You are able to eliminate one of the choices on each question and then guess from the remaining 3 choices. A passing grade is to get 8 or more of the questions correct. Find the chance that you pass.

Stat 1040

1. How many ways can you select k objects from among n objects?

"n choose k" =
$$\binom{n}{k}$$
 = $\frac{n!}{k!(n-k)!}$ [Given n students, how many ways can you choose a committee of size k?]

2. Four draws are made with replacement from the box [R,R,G,G,G,G].

Find the probability that

- a) a red ticket is never drawn
- b) exactly 3 red tickets are drawn
- c) exactly 4 green tickets are drawn
- 3. A coin will be tossed 10 times. Find the probability of getting
 - a) exactly 4 heads
 - b) exactly 5 heads
 - c) at least 2 heads

PROBABILITY RULES (The World)

Definition: The probability [chance] of event A is the proportion [percentage] of the time A is expected to happen when the random process is repeated over and over again.

Opposite Event Rule: The probability that event A happens is equal to one minus the probability that A doesn't happen.

Multiplication Rule: The probability that events A and B both happen is equal to the probability that A happens times the probability that B happens given that event A has occurred.

Definition: Two events are mutually exclusive when the occurrence of one prevents the occurrence of the other.

Addition Rule: The probability that event A or event B happens is equal to the probability that A happens plus the probability that B happens minus the probability that both happen. If events A and B are mutually exclusive, then the probability that event A or B happens is simply the sum of the probabilities.

Definition: Two events are independent if when one happens, the probability that the other happens is unchanged.

Fundamental Counting Principle: If event A can occur in m ways and after A occurs event B can occur in n ways, then the number of ways both events A and B can occur is $m \times n$.

The number of ways k objects can be selected from n objects without regard to order is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Repeated Trials: Suppose we have n independent trials, and the probability that event E occurs in an given trial is p. Then the probability that E will occur exactly k times is

$$\frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

EXPENDITURES BY STATUTORY CATEGORY

