Regression: The Method of Least Squares

Choose the line that makes the sum of the squared errors as small as possible.

The regression line minimizes
$$\left(e_1\right)^2+\left(e_2\right)^2+\left(e_3\right)^2+\left(e_4\right)^2+\left(e_5\right)^2$$
 .

Among all lines, the regression line makes the smallest r.m.s. error in predicting y from x.

The r.m.s. error is the r.m.s. size of the errors.

The r.m.s. error measures how good a prediction is. It says how large the errors are likely to be.

To calculate the r.m.s. error use the following shortcut:

r.m.s. error =
$$\sqrt{(1-r^2)}$$
 (SD_Y)

The correlation between area and perimeter is r = 0.98! The scatter diagram:

$$x = 1000$$
, $y = \frac{1}{1000}$

"He says we've ruined his positive association between height and weight."

DILBERT

