Name or Number:

Stat 1040, Fall 2008, Midterm 2

Show your work. The test is out of 100 points and you have 50 minutes, so budget your time accordingly.

- 1. A child has 6 packets of candy remaining from Halloween:
 - 3 Snickers
 - 2 M&Ms
 - 1 Skittles

The child decides to choose packets at random to eat each day. (Note: obviously, the child is choosing without replacement!)

(a) (2 points) What is the chance the first choice will be M&Ms?

$$\frac{2}{6} = \frac{1}{3}$$

(b) (2 points) What is the chance the first choice will be M&Ms and the second choice will also be M&Ms?

$$\frac{2}{6} \times \frac{1}{5} = \frac{2}{30} = \frac{1}{15}$$

(c) (2 points) What is the chance that neither of the first two choices will be Snickers?

$$\frac{3}{6} \times \frac{2}{5} = \frac{6}{30} = \frac{1}{5}$$

(d) (2 points) What is the chance that at least one of the first 2 choices will be Snickers?

- (e) (2 points) What is the chance that the last remaining packet of candy (on day 6) will be a packet of skittles?

 Same as any other day
- 2. A fast food chain has a game in which each large burger wins a prize with probability $\frac{1}{4}$ and the chances are independent.
 - (a) (2 points) If I buy 4 burgers, what is the chance I get no prizes?

$$\left(\frac{3}{4}\right)^4 = .316$$

(b) (2 points) If I buy 4 burgers, what is the chance I get 4 prizes?

$$\left(\frac{1}{4}\right)^{4} = .0039$$

(c) (2 points) If I buy 4 burgers, what is the chance that I get at least one prize?

1- chance of no prizes =
$$1-\left(\frac{3}{4}\right)^4=.684$$

3. In each of the following cases, circle the correct answer.

- (a) (2 points) A die will be rolled some number of times and you win \$1 if it shows "6" more than 20% of the time. Which is better for you 60 rolls?
- (b) (2 points) A die will be rolled some number of times and you win \$1 if it shows "6" more than 15% of the time. Which is better for you: 60 rolls or 600 rolls?
- (c) (2 points) A die will be rolled some number of times and you win \$1 if it shows "6" between 15% and 20% of the time. Which is better for you: 60 rolls or 600 rolls?
- (d) (2 points) A die will be rolled some number of times and you win \$1 if it shows "6" exactly $\frac{1}{6}$ of the time. Which is better for you: 60 rolls?
- (e) (2 points) A die has been rolled 10 times and the last 3 rolls have all been "6"s. The chance the next roll will be a "6" is (underline the correct answer):

i. less than $\frac{1}{6}$.

(ii. exactly $\frac{1}{6}$)

iii. more than $\frac{1}{6}$.

- 4. For each of the following answer True or False. (2 points each)
 - (a) For confidence intervals, we do not need the tickets in the box to follow the normal curve provided we have a large enough simple random sample.
 - (b) The law of averages says that if we toss a coin more and more times, the percentage of heads will tend to get closer and closer to 50%.
 - (c) For a large sample, the sample itself will follow the normal curve even if the tickets in the box do not.
 - (d) For a large sample, the average of the sample will follow the normal curve even if the tickets in the box do not.
- 5. (15 points) In the 2008 election, 63% of Utah voters voted for McCain. If we take a simple random sample of 300 these Utah voters, what is the chance that fewer than 50% of our sample voted for McCain?

370 63 (avekar = .63 SD box = .48 EVsum =
$$300(.63) = 189$$

SEsum = $\sqrt{300}(.48) = 8.31$
EV = $\frac{189}{300} \times 100\% = 63\%$ V
SE₈ = $\frac{8.31}{300} \times 100\% = 2.77\%$

7. 63%

$$z = \frac{50 - 63}{2.77} = -4.69$$

-area is almost 0? (off the chart).

4.69

6. The following chart comes from the Utah Statesman 10/31/08.

Who are you going to vote for president?		
	- Percentag	e Number of people
John McCain (Republican)	45 %	(60)
Barack Obama Democratic)	46 %	(62)
Chuck Baldwin Constitution)	5 %	(7)
Bob Barr (Libertarian)	1 %	(2)
Raiph Nader Independent)	1 %	(2)
Cynthia McKinney (Green)	1 %	(1)

(a) (12 points) Assuming these 134 people are a simple random sample of all USU students, find a 90% confidence interval for the percentage of USU students who were planning to vote for Obama at the time of the survey.

bootstrap: box is approx:
$$540461$$
, avebox=.45
 $5E_{sum} = \sqrt{134} (.498) = 5.77$
 $SE_{70} = \frac{5.77}{134} \times 100\% = 4.3\%$
CI is $46\% \pm 1.65(4.3\%)$

- (b) (9 points) Now suppose you find out that these results came from the Statesman's online poll. Give 3 different reasons why your confidence interval in (a) is unreliable. Note: points will be deducted if your reasons are too vague or if they overlap too much.
 - -not all students visit the Statesman online, and the ones that do might have different political views from the ones that don't
 - even if students visit the site, ones who feel strongly may be more likely to take the poll
 - people can vote more than once non-students may vote

 - talk is cheap

- 7. The average GPA for graduating seniors in a large university is 3.13 with an SD of 0.7.
 - (a) (15 points) If I take a simple random sample of 100 graduating seniors from this university, what is the chance that the average GPA of those in my sample will be more than 27 3,15?

D GPAs D ave = 3.13

$$50_{box} = .7$$

EVave = 3.13
 $SE_{sum} = \sqrt{100}(.7) = 7$
 $SE_{aue} = \frac{7}{100} = .07$

$$z = \frac{3.15 - 3.13}{.07} = .29$$

(b) (3 points) If you find out that the histogram for the GPAs does not follow the normal curve, is your answer to part (a) still valid? Why/why not?

Yes, because the sample is quite large and the GPAs are probably not extremely non-normal (how low can a GPA go?)

8. (12 points) For a simple random sample of 400 Cache Valley.6-year-olds, the average height is 117.25 cm with an SD of 4.2 cm. Find a 95% confidence interval for the average height of all Cache Valley 6-year-olds.

boofstrap:
$$avebox = ?$$

 $SE_{sum} = 50box = ? \approx 4.2$
 $SE_{sum} = 5400 (4.2) = 84$
 $SE_{ave} = \frac{84}{400} = .21$