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(b) Based on your results for (a), guess the minimum
number of moves required if you start with an arbi-
trary number of n disks. (Hint: To help see a pat-
tern, add 1 to the number of moves for n 5 1, 2, 3,
4.)

(c) A legend claims that monks in a remote monastery
are working to move a set of 64 disks, and that the
world will end when they complete their sacred
task. Moving one disk per second without error, 24
hours a day, 365 days a year, how long would it take
to move all 64 disks?

55. Number of Handshakes Suppose there are n people
at a party and that each person shakes hands with every
other person exactly once. Let f ~n! denote the total

8.6 T H E B I N O M I A L T H E O R E M

We remake nature by the act of discovery, in the poem or in the theorem.
And the great poem and the great theorem are new to every reader, and yet
are his own experiences, because he himself recreates them. @And# in the
instant when the mind seizes this for itself, in art or in science, the heart
misses a beat.

J. Bronowski

In this section we derive a general formula to calculate an expansion for ~a 1 b!n

for any positive integer power n, or to find any particular term in such an expansion.
We begin by calculating the first few powers directly and then look for significant
patterns. To go from one power of ~a 1 b! to the next, we simply multiply by
~a 1 b!:

~a 1 b!1 5 a 1 b

~a 1 b!2 5 a2 1 2ab 1 b 2

~a 1 b!3 5 a3 1 3a2b 1 3ab 2 1 b 3

~3! a 1 b

a4 1 3a3b 1 3a2b 2 1 ab 3

a3b 1 3a2b 2 1 3ab 3 1 b 4 Add like terms

~a 1 b!4 5 a4 1 4a3b 1 6a2b 2 1 4ab 3 1 b 4

~3! a 1 b

a5 1 4a4b 1 6a3b 2 1 4a 2b 3 1 ab 4

a4b 1 4a3b 2 1 6a2b 3 1 4ab 4 1 b 5 Add like terms

~a 1 b!5 5 a5 1 5a4b 1 10a3b 2 1 10a2b 3 1 5ab 4 1 b 5

The thing that started it
all was this silly newspaper
puzzle that asked you to
count up the total number
of ways you could spell the
words “Pyramid of Values”
from a triangular array of
letters. This led my friend
and me to discover Pascal’s
triangle. This happened in
grade 10 or 11.

Bill Gosper

number of handshakes. See Exercise 19, page 469.
Show

f ~n! 5
n~n 2 1!

2
for every positive integer n.

56. Suppose n is an odd positive integer not divisible by 3.
Show that n2 2 1 is divisible by 24. (Hint: Consider the
three consecutive integers n 2 1, n, n 1 1. Explain
why the product ~n 2 1!~n 1 1! must be divisible by 3
and by 8.)

57. Finding Patterns If an 5 Ï24n 1 1, (a) write out
the first five terms of the sequence $an%. (b) What odd
integers occur in $an%? (c) Explain why $an% contains all
primes greater than 3. (Hint: Use Exercise 56.)
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When we look at these expansions of ~a 1 b!n for n 5 1, 2, 3, 4, and 5, several
patterns become apparent.

1. There are n 1 1 terms, from an to b n.
2. Every term has essentially the same form: some coefficient times the

product of a power of a times a power of b.
3. In each term the sum of the exponents on a and b is always n.
4. The powers (exponents) on a decrease, term by term, from n down to 0

where the last term is given by b n 5 a0b n, and the exponents on b in-
crease from 0 to n.

Knowing the form of the terms in the expansion and that the sum of the powers is
always n, we will have the entire expansion when we know how to calculate the
coefficients of the terms. If we display the coefficients from the computations
above, we find precisely the numbers in the first few rows of Pascal’s triangle:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Using the address notation for Pascal’s triangle that we introduced in Section
8.4, the last row of coefficients in the triangle is ~ 0

5!, ~ 1
5 !, ~ 2

5!, ~ 3
5!, ~ 4

5!, ~ 5
5!, and so

we may write the expansion for ~a 1 b!5:

~a 1 b!5 5 S5
0D a5b 0 1 S5

1D a4b 1 1 S5
2Da3b 2 1 S5

3Da2b 3

1 S5
4Da1b 4 1 S5

5Da0b 5

Each term exhibits the same form. For n 5 5, each coefficient has the form ~r
5!,

where r is also the exponent on b. For each term the sum of the exponents on a and
b is always 5, so that when we have b r, we must also have a52r. Finally, since the
first term has r 5 0, the second term has r 5 1, etc., the ~r 1 1!st term involves r.

This leads to a general conjecture for the expansion of ~a 1 b!n which we state
as a theorem that can be proved using mathematical induction. (See the end of this
section.)

Binomial theorem

Suppose n is any positive integer. The expansion of ~a 1 b!n is given by

~a 1 b!n 5 Sn
0Danb 0 1 Sn

1Dan21b 1 1 · · · 1 Sn
rDan2rb r 1 · · · 1 Sn

nDa0b n

(1)

where the ~r 1 1!st term is Sn
rDan2rb r, 0 # r # n. In summation notation,

~a 1 b!n 5 o
n

r50
Sn

rDan2rb r. (2)
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At this point, we have established only that the form of our conjecture is valid
for the first five values of n, and we have not completely justified our use of the name
Pascal’s triangle of binomial coefficients. Nonetheless, the multiplication of
~a 1 b!4 by ~a 1 b! to get the expansion for ~a 1 b!5 contains all the essential ideas
of the proof.

We still lack a closed-form formula for the binomial coefficients. We know, for
example, that the fourth term of the expansion of ~x 1 2y!20 is ~ 3

20!x 17~2y!3, but we
cannot complete the calculation without the binomial coefficient ~ 3

20!. This would
require writing at least the first few terms of 20 rows of Pascal’s triangle.

Pascal himself posed and solved the problem of computing the entry at any
given address within the triangle. He observed that to find ~r

n!, we can take the
product of all the numbers from 1 through r, and divide it into the product of the
same number of integers, from n downward. This leads to the following formula.

Pascal’s formula for binomial coefficients

Suppose n is a positive integer and r is an integer that satisfies 0 , r # n.

The binomial coefficient Sn
rD is given by

Sn
rD 5

n~n 2 1! · · · ~n 2 r 1 1!

1 · 2 · 3 · · · r
(3)

We leave it to the reader to verify that the last factor in the numerator,
~n 2 r 1 1!, is the r th number counting down from n. This gives the same number
of factors in the numerator as in the denominator.

cEXAMPLE 1 Using Pascal’s formula Find the first five binomial
coefficients on the tenth row of Pascal’s triangle, and then give the first five terms
of the expansion of ~a 1 b!10.

Solution
Follow the strategy.

S10
1 D 5

10
1

5 10, S10
2 D 5

10 · 9
1 · 2

5 45, S10
3 D 5

10 · 9 · 8
1 · 2 · 3

5 120, and

S10
4 D 5

10 · 9 · 8 · 7
1 · 2 · 3 · 4

5 210.

Therefore the first five terms in the expansions of ~a 1 b!10 are

a10 1 10a9b 1 45a8b 2 1 120a7b 3 1 210a6b 4. b

There is another very common formula for binomial coefficients that uses factori-
als. Equation (3) has a factorial in the denominator, and we can get a factorial in
the numerator if we multiply numerator and denominator by the product of the rest
of the integers from n 2 r down to 1:

Sn
rD 5

n~n 2 1! . . . ~n 2 r 1 1!

1 · 2 · . . . r

5
n~n 2 1! . . . ~n 2 r 1 1!

r!
·

~n 2 r! . . . 2 · 1
~n 2 r! . . . 2 · 1

5
n!

r! ~n 2 r!!
.

Strategy: We know ~10
0 ! 5

1. Use Equation (3) to get
the remaining coefficients.
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HISTORICAL NOTE BLAISE PASCAL

While Equation (3) does not give a formula for ( 0
n), the formulation in terms

of factorials does apply.

Sn
0D 5

n!
0! ~n 2 0!!

5
n!

1 · n!
5

n!
n!

5 1.

This gives an alternative to Pascal’s formula.

Alternative formula for binomial coefficients

Suppose n is a positive integer and r an integer that satisfies 0 # r # n. The
binomial coefficient ~ r

n! is given by

Sn
rD 5

n!
r! ~n 2 r!!

(4)

Pascal’s triangle is named after
Blaise Pascal, born in France in
1623. Pascal was an individual of
incredible talent and breadth who
made basic contributions in many
areas of mathematics, but who died
early after spending much of life
embroiled in bitter philosophical
and religious wrangling.

For some reason, Pascal’s
father decided that his son should
not be exposed to any mathematics.
All mathematics books in the home
were locked up and the subject was
banned from discussion. We do not
know if the appeal of the forbidden
was at work, but young Pascal

approached his father directly and asked
what geometry was. His father’s answer so
fascinated the 12-year-old boy that be began
exploring geometric relationships on his own. He
apparently rediscovered much of Euclid
completely on his own. When Pascal was
introduced to conic sections ~see Chapter 10! he
quickly absorbed everything available; he
submitted a paper on conic sections to the
French academy when he was only 16 years
of age.

At the age of 29, Pascal had a
conversion experience that led to a
vow to renounced mathematics for
a life of religious contemplation.
Before that time, however, in
addition to his foundational work in
geometry, he built a mechanical
computing machine (in honor of
which the structured computer
language Pascal is named),
explored relations among binomial
coefficients so thoroughly that we
call the array of binomial
coefficients Pascal’s triangle even
though the array had been known,
at least in part, several hundred
years earlier, proved the binomial

theorem, gave the first published proof by
mathematical induction, and invented (with
Fermat) the science of combinatorial analysis,
probability, and mathematical statistics.

Before his death ten years later, Pascal spent
only a few days on mathematics. During a night
made sleepless by a toothache, he concentrated on
some problems about the cycloid curve that had
attracted many mathematicians of the period. The
pain subsided, and, in gratitude, Pascal wrote up
his work for posterity.

Blaise Pascal made
significant contributions to
the study of mathematics
before deciding to devote

his life to religion.
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cEXAMPLE 2 Symmetry in binomial coefficients Show that

(a) S6
2D 5 S6

4D (b) Sn
rD 5 S n

n 2 rD .

Solution
Follow the strategy.

Strategy: Use Equation (4)
to evaluate both sides of the (a) S6

2D 5
6!

2! ~6 2 2!!
5

6!
2! 4!

and S6
4D 5

6!
4! ~6 2 4!!

5
6!

4! 2!
.

given equations to show that
the two sides of each equa-

(b) Sn
rD 5

n!
r! ~n 2 r!!

andtion are equal.

S n
n 2 rD 5

n!
~n 2 r!! @n 2 ~n 2 r!#!

5
n!

~n 2 r!! r!

Thus

Sn
rD 5 S n

n 2 rD. b

cEXAMPLE 3 Adding binomial coefficients Show that ~3
8! 1 ~4

8! 5 ~4
9!.

Get a common denominator and add fractions, but do not evaluate any of the
factorials or binomial coefficients.

Solution
Use Equation (3) to get ~3

8! and ~4
8!, get common denominators, then add.

S8
3D 1 S8

4D 5
8 · 7 · 6
1 · 2 · 3

1
8 · 7 · 6 · 5
1 · 2 · 3 · 4

5
~8 · 7 · 6! · 4
~1 · 2 · 3! · 4

1
8 · 7 · 6 · 5
1 · 2 · 3 · 4

5
8 · 7 · 6~4 1 5!

1 · 2 · 3 · 4
5

9 · 8 · 7 · 6
1 · 2 · 3 · 4

5 S9
4D .

Thus

S8
3D 1 S8

4D 5 S9
4D . b

Example 3 focuses more on the process than the particular result, hence the
instruction to add fractions without evaluating. When we write out the binomial
coefficients as fractions, we can identify the extra factors we need to get a common
denominator and then add. In Example 2, we proved that ( r

n) 5 ~n 2 r
n ! giving a

symmetry property for the nth row of Pascal’s triangle. Example 3 illustrates the
essential steps to prove the following additivity property (see Exercise 61):

Sn
rD 1 S n

r 1 1D 5 Sn 1 1
r 1 1D
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Symmetry and additivity properties

Binomial coefficients have the following properties:

Symmetry Sn
rD 5 S n

n 2 rD (5)

Additivity Sn
rD 1 S n

r 1 1D 5 Sn 1 1
r 1 1D (6)

Notice that we used the additivity property from Equation (6) in Section 8.4
to get the ~n 1 1!st row from the nth row in Pascal’s triangle. This justifies our
claim that the entries in Pascal’s triangle are binomial coefficients.

Evaluating binomial coefficientsTECHNOLOGY TIP r

Most graphing calculators have the capacity to evaluate binomial coefficients
directly, but we need to know where to look for the needed key. Most
calculators use the notation nCr (meaning “number of combinations taken r at
a time,” language from probability), and the key is located in a probability
(PRB, PROB) submenu under the MATH menu. To evaluate, say ~ 4

20!, the process is
as follows.

All TI-calculators: Having entered 20 on your screen, press MATH PRB nCr, which
puts nCr on the screen. Then type 4 so you have 20nCr4. When you enter, the
display should read 4845.

All Casio calculators: Having entered 20 on your screen, press MATH PRB nCr,
which puts C on the screen. Then type 4 so you have 20C4. When you
execute, the display should read 4845.

HP-38: Press MATH, go down to PROB, highlight COMB, OK. Then, on the command
line you want COMB(20,4). Enter to evaluate.

HP-48: Put 20 and 4 on the stack. As with many HP-48 operations, COMB (for
“combinations”) works with two numbers. MTH NXT PROB COMB returns 4845.

cEXAMPLE 4 Binomial Theorem Use the binomial theorem to write out
the first five terms of the binomial expansion of ~x 1 2y 2!20 and simplify.

Solution
Use Equation (1) with a 5 x, b 5 2y 2, and n 5 20. The first five terms of
~x 1 2y 2!20 are

x 20 1 S20
1 D x 19~2y 2! 1 S20

2 D x 18~2y 2!2 1 S20
3 D x 17~2y 2!3 1 S20

4 D x 16~2y 2!4.

Before simplifying, find the binomial coefficients, using either Equation (3) or the
Technology Tip.

S20
1 D 5

20
1

5 20 S20
2 D 5

20 · 19
1 · 2

5 190

S20
3 D 5

20 · 19 · 18
1 · 2 · 3

5 1140 S20
4 D 5

20 · 19 · 18 · 17
1 · 2 · 3 · 4

5 4845

Therefore, the first five terms of ~x 1 2y 2!20 are

x 20 1 20 · 2x 19y 2 1 190 · 4x 18y 4 1 1140 · 8x 17y 6 1 4845 · 16x 16y 8, or

x 20 1 40x 19y 2 1 760x 18y 4 1 9120x 17y 6 1 77520x 16y 8. b
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cEXAMPLE 5 Finding a middle term In the expansion of ~2x 2 2 1
x!

10, find
the middle term.

Solution
There are 10 1 1 or 11 terms in the expansion of a tenth power, so the middle term
is the sixth (five before and five after). The sixth term is given by r 5 5.

S10
5 D~2x 2!5S2

1
xD

5

5 252~32x 10!S2
1
xD

5

5 28064x 5

The middle term is 28064x 5. b

cEXAMPLE 6 Finding a specified term In the expansion of (2x 2 2 x
1)10, find

the term whose simplified form involves 1
x .

Solution
Follow the strategy. The general term given in Equation (2) isStrategy: First find the

general term, then simplify.
Finally, find the value of r S10

r D~2x 2!102rS2
1
xD

r

5 S10
r D2102rx 2022r~21!rx2r

that gives 21 as the expo-
nent of x.

5 S10
r D~21!r2102rx 2023r.

For the term that involves 1
x or x21, find the value of r for which the exponent

on x is 21: 20 2 3r 5 21, or r 5 7. The desired term is given by

S10
7 D~2x 2!3S2

1
xD

7

5 2
120~8!x 6

x 7 5 2
960

x
. b

Proof of the Binomial Theorem

We can use mathematical induction to prove that Equation (1) holds for every positive
integer n.

(a) For n 5 1, Equation (1) is ~a 1 b!1 5 ~0
1!a1b 0 1 ~1

1!a0b 1 5 a 1 b, so Equa-
tion (1) is valid when n is 1.

(b) Hypothesis: ~a 1 b!k 5 Sk
0Dak 1 Sk

1Dak21b 1 · · ·

1 Sk
rDak2rb r 1 · · · 1 Sk

kDb k (7)

Conclusion: ~a 1 b!k11 5 Sk 1 1

0 Dak11 1 Sk 1 1

1 Dakb 1 · · · (8)

1 Sk 1 1
r Dak112rb r 1 · · · 1 Sk 1 1

k 1 1Db k11
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Since ~a 1 b!k11 5 ~a 1 b!k~a 1 b! 5 ~a 1 b!ka 1 ~a 1 b!kb, multiply the right
side of Equation (7) by a, then by b, and add, combining like terms. It is also helpful
to replace ~ 0

k ! by ~ 0
k 1 1 ! and ( k

k) by ( k 1 1
k 1 1), since all are equal to 1.

~a 1 b!k~a 1 b! 5 Sk 1 1

0
Dak11 1 FSk

0D 1 Sk
1DGakb

1 FSk
1D 1 Sk

2DG ak21b 2 1 · · ·

1 FS k
r 2 1D 1 Sk

rDGak112rb r 1 · · ·

1 Sk 1 1
k 1 1Db k11.

Apply the additive property given in Equation (6) to the expressions in brackets to
get Equation (8), as desired. Therefore, by the Principle of Mathematical Induc-
tion, Equation (1) is valid for every position integer n.

EXERCISES 8.6

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. For every positive integer n, ~3n!! 5 ~3!!~n!!.

2. There are ten terms in the expression of ~1 1 x!10.

3. The middle term of the expansion of (x 1 1
x )8

is 70.

4. The expansion of ~x 2 1 2x 1 1!8 is the same as the
expansion of ~x 1 1!16.

5. ~1
8! 1 ~2

8! 2 ~2
9! 5 0.

6. For every positive integer x, SÏx 1
1
xD4

5 x 2 1
1
x 4 .

Exercises 7–10 Fill in the blank so that the resulting
statement is true.

7. After simplifying the expansion of ~ x 2 2 1
x !5, the

coefficient of x 4 is .

8. In the expansion of (Ïx 2 1
Ïx

)6, the middle term is
.

9. ~3
8! 2 ~2

8! 5 .

10. The number of terms in the expansion of
~x 2 1 4x 1 4!12 is .

Develop Mastery

Exercises 1–14 Evaluate and simplify. Use Equations
(3)–(6). Then verify by calculator.

1. (a) ~9
3! (b) ~9

6!

2. (a) ~14
3 ! (b) ~14

11!

3. (a) ~8
5! (b) ~8

3!

4. (a) ~100
98 ! (b) ~100

2 !

5. (a) ~20
2 ! 1 ~20

3 ! (b) ~21
3 !

6. (a) ~7
3! 1 ~7

4! (b) ~8
4!

7. (a) 5
6 · ~10

5 ! (b) ~10
6 !

8. (a) 9
4 · ~12

3 ! (b) ~12
4 !

9. (a) ~10
6 ! · ~6

3! (b) ~10
7 ! · ~7

3!

10. (a) ~12
10! · ~10

4 ! (b) ~8
5! · ~5

3!

11. (a)
10!
7!

(b)
10!

7! 3!

12. (a) 8! 1 2! (b) 10!

13. (a)
6! 1 4!

3!
(b)

8! 2 5!
3!

14. (a) 6! 2 3! (b) ~6 2 3!!

Exercises 15–18 Calculator Evaluation Use the Tech-
nology Tip to evaluate the expression.

15. (a) ~ 8
24! (b) ~ 3

37! 1 ~ 5
37!

16. (a) ~ 5
31! (b) ~ 4

16! 2 ~ 10
12!

17. (a) ~ 8
12! · ~ 3

20! (b) ~ 7
25! 4 ~ 4

25!

18. (a) ~ 3
32! · ~ 29

31! (b) ~ 8
31! 4 ~ 3

31!
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Exercises 19–24 Evaluate and simplify.

19. S n
n 2 1D 20. S n

n 2 2D 21. Sn 1 1
n 2 1D

22.
~n 1 1!!
~n 2 1!!

23.
S n

k 1 1D
Sn

k D
24.

Sn 1 1
r D

S n
r 2 1D

Exercises 25–30 Binomial Theorem Use the binomial
theorem formula to expand the expression, then simplify
your result.

25. ~x 2 1!5 26. ~x 2 3y!4

27. S1
x

2 2y 2D4

28. Sx 2 1
2
xD6

29. S3x 1
1
x 2D5

30. ~x 2 1!7

Exercises 31–34 Expansion Use the formula in Equa-
tion (2). (a) Write the expansion in sigma form. (b) Expand
and simplify.

31. ~2 2 x!5 32. S2x 1
y
2D5

33. Sx 2 1
2
xD5

34. ~x 2 2 2!6

Exercises 35–38 Number of Terms (a) How many
terms are there in the expansion of the given expression?
(b) If the answer in (a) is odd, then find the middle term. If
it is even, find the two middle terms.

35. ~x 2 2 3!8 36. Sx 2 2
1
xD15

37. ~1 1 Ïx!5 38. ~x 1 2Ïx!10

Exercises 39–40 Find the first three terms in the expan-
sion of

39. Sx 1
1
xD20

40. Sx 2
3
xD25

Exercises 41–44 Find Specified Term If the expression
is expanded using Equation (1), find the indicated term and
simplify.

41. Sx 3 2
2
xD5

; third term

42. Sx
2

2 2yD12

; tenth term

43. S2x 2
y
2D10

; fourth term

44. ~x21 1 2x!8; fourth term

Exercises 45–52 Specified Term If the expression is ex-
panded and each term is simplified, find the coefficient of
the term that contains the given power of x. See Example 6.

45. Sx 3 2
2
xD4

; x 4 46. S2x 2
1
3D10

; x 7

47. ~x 2 1 2!11; x 8 48. Sx 2 2
2
xD10

; x 8

49. Sx 3 2
1
xD15

; x 25 50. Sx 2 2
3
xD12

; x 9

51. ~x 2 2 2x 1 1!3; x 4 52. ~x 2 1 4x 1 4!3; x 2

Exercises 53–60 Solve Equation Find all positive in-
tegers n that satisfy the equation.

53. ~2n!! 5 2~n!! 54. ~3n!! 5 ~3!!~n!!

55. 2~n 2 2!! 5 n! 56. ~3n!! 5 3~n 1 1!!

57. Sn
3D 5 Sn

5D 58. Sn
3D 1 Sn

4D 5 S8
4D

59. Sn
2D 5 15 60. Sn

2D 5 28

61. (a) Show that ( 6
10) 1 ( 7

10) 5 ( 7
11) by carrying out the

following steps. Using Equation (3), express each term
of ( 6

10) 1 ( 7
10) as a fraction with factorials; then, without

expanding, get a common denominator and express the
result as a fraction involving factorials. By Equa-
tion (3), show that the result is equal to ( 7

11). See Exam-
ple 3.
(b) Following a pattern similar to that described in part
(a), prove the additivity property for the binomial
coefficients

Sn
rD 1 S n

r 1 1D 5 Sn 1 1
r 1 1D .

62. By expanding the left- and right-hand sides, verify that

S n
k 1 1D 5

n 2 k
k 1 1

· Sn
kD .

63. Explore
Let Sn 5 1 · 1! 1 2 · 2! 1 · · · 1 n · n! 1 1.

S1 5 1 · 1! 1 1 5 2 5 2! and
S2 5 1 · 1! 1 2 · 2! 1 1 5 6 5 3!

(a) Evaluate S3, S4, and S5 and look for a pattern. On
the basis of your data, guess the value of S8. Verify
your guess by evaluating S8 directly.

(b) Guess a formula for Sn and use mathematical induc-
tion to prove that your formula is correct.

64. Explore Suppose fn~x! 5 ~ x 1 1
x!

2n and let an be the
middle term of the expansion of fn~x!.
(a) Find a1, a2, a3, and a4.
(b) Guess a formula for the general term an. Is an 5

~2n!!
n! n!

?




